Effect of a Pool of Peptides Isolated from Crotalus durissus terrificus (South American Rattlesnake) Venom on Glucose Levels of Mice Fed on a High-Fat Diet

  • M. E. S. Martins-Santos
  • R. R. Resende
  • F. C. H. Pinto
  • A. M. Soares
  • S. Marangoni
  • E. Oliveira
  • F. Albericio
  • S. L. Da Silva


This study investigated the effect of a pool of peptides, isolated from venom of Crotalus durissus terrificus (South American rattlesnake) on glucose concentration in C57BL/6 mice fed on a high-fat diet for 6 weeks. The pool of peptides (molecular mass around of 10 kDa) was obtained using a MidJet apparatus with a cartridge of 10 KDa. The peptide pool was injected intraperitoneally in mice in a single dose (0.5 mg/animal) or multiple doses (0.2 mg/dose). After predetermined times (30, 60, 90 and 120 min) post injections, venous blood samples were collected for enzymatic measurement of serum glucose using a commercial glucose kit (glucose oxidase method). High-fat fed mice showed an increase in blood glucose concentration, in comparison with mice fed on the chow diet. Thirty minutes after a single dose of the peptide pool, high-fat fed animals showed a significant decrease (~47%) in glycemia. However, the glucose level increased again at 60 and 120 min. Conversely, after multiple injections of the pool of peptides administered every 30 min, the blood glucose concentration in the high-fat mice was significantly decreased (~37%) and remained at low levels until 120 min. These results suggest that the tested pool of peptides from Crotalus durissus terrificus contained a peptide (or peptides) with a beneficial role on glucose-lowering action of high-fat fed mice.


Bioactive peptides Crotalus durissus terrificus Snake venom Hyperglycemia Glucose 



Diabetes mellitus type 2


Peroxisome proliferator-activated receptor-γ


Glucagon-like peptide analogues


Dipeptidyl peptidase-4


Mice treated with high fat diet


Mice treated with high fat diet and injected with saline


Mice treated with high fat diet and injected with a pool of peptide


Pool of peptide


  1. Arner P (2003) The adipocyte in insulin resistance: key molecules and the impact of the Thiazolidinediones. Trends Endocrinol Metab 14:137–145PubMedCrossRefGoogle Scholar
  2. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157PubMedCrossRefGoogle Scholar
  3. Bernardes D, Manzoni MSJ, Souza CP, Tenório N, Dâmaso AR (2004) Efeitos da dieta hiperlipídica e do treinamento de natação sobre o metabolismo de recuperação ao exercício em ratos. Rev Bras Educ Fís Esp 18(2):191–200Google Scholar
  4. Buettner R, Newgard CB, Rhodes CJ, O’Doherty RM (2000) Correction of diet induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin resistance by moderate hyperleptinemia. Am J Physiol Endocrinol Metab 278:E563–E569PubMedGoogle Scholar
  5. Da Silva SL, Calgarotto AK, Chaar JS, Marangoni S (2008) Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA2 activity. Toxicon 52:655–666PubMedCrossRefGoogle Scholar
  6. Damico DCS, Hofling MAD, Cintra M, Leonardo MB, Calgarotto AK, Da Silva SL, Marangoni S (2008) Pharmacological study of edema and myonecrosis in mice induced by venom of the bushmaster snake (Lachesis muta muta) and its basic Asp49 phospholipase A(2) (LmTX-I). Protein J 27:384–391PubMedCrossRefGoogle Scholar
  7. Deacon CF (2007) Incretin-based treatment of type 2 diabetes: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab 9(Suppl 1):23–31PubMedCrossRefGoogle Scholar
  8. DeFronzo RA (1999) Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 131:281–303PubMedGoogle Scholar
  9. Degn KB, Brock B, Juhl CB, Djurhuus CB, Grubert J, Kim D, Han J, Taylor K, Fineman M, Schmitz O (2004) Effect of intravenous infusion of exenatide (synthetic exendin 4) on glucose dependent insulin secretion and counterregulation during hypoglycemia. Diabetes 53:2397–2403PubMedCrossRefGoogle Scholar
  10. Distefano JK, Watanabe RM (2010) Pharmacogenetics of anti-diabetes drugs. Pharmaceuticals (Basel) 3:2610–2646Google Scholar
  11. Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 84:3434–3438PubMedCrossRefGoogle Scholar
  12. Estadella D, Oyama LM, Dâmaso AR, Ribeiro EB, Oller Do Nascimento CM (2004) Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition 20:218–224PubMedCrossRefGoogle Scholar
  13. Fehmann HC, Habener JF (1992) Insulinotropic glucagonlike peptide-I(7–37)/(7–36) amide: a new incretin hormone. Trends Endocrinol Metab 3:158–163PubMedCrossRefGoogle Scholar
  14. Gaíva MH, Couto RC, Oyama LM, Couto GE, Silveira VL, Riberio EB, Nascimento CM (2001) Polyunsaturated fatty acid-rich diets: effect on adipose tissue metabolism in rats. Br J Nutr 86:371–377PubMedCrossRefGoogle Scholar
  15. Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Göke B (1993) Exendin 4 is a high potency agonist and truncated exendin (9–39) amide and antagonist at the glucagon like peptide 1-(7–36) amide receptor of insulin secreting beta cells. J Biol Chem 268:19650–19655PubMedGoogle Scholar
  16. Hernández Cruz A, Garcia-Jimenez S, Zucatelli Mendonça R, Petricevich VL (2008) Pro- and anti-inflammatory cytokines release in mice injected with Crotalus durissus terrificus venom. Mediators Inflamm 8:749–762Google Scholar
  17. Jéquier E (2002) Pathways to obesity. Int J Obes Relat Metab Disord 26(Suppl 2):S12–S17PubMedCrossRefGoogle Scholar
  18. Keating GM (2005) Exenatide. Drugs 65:1681–1692PubMedCrossRefGoogle Scholar
  19. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH, Wintle ME, Maggs DG (2008) Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 24:275–286PubMedGoogle Scholar
  20. Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2:1300–1304PubMedCrossRefGoogle Scholar
  21. Lin S, Thomas TC, Storlien LH, Huang XF (2000) Development of high fat diet induced obesity and leptin resistance in C57Bl/6 J mice. Int J Obes Relat Metab Disord 24:639–646PubMedCrossRefGoogle Scholar
  22. Nauck MA, Wollschlager D, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Willms B (1996) Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 9:1546–1553CrossRefGoogle Scholar
  23. Nogueira TC, Ferreira F, Toyama MH, Stoppiglia LF, Marangoni S, Boschero AC, Carneiro EM (2005) Characterization of the insulinotropic action of a phospholipase A2 isolated from Crotalus durissus collilineatus rattlesnake venom on rat pancreatic islets. Toxicon 45:243–248PubMedCrossRefGoogle Scholar
  24. Pimenta AMC, Lima ME (2005) Small peptides, big world: biotechnological potential in neglected bioactive peptides from arthropod venoms. J Peptide Sci 11:670–676CrossRefGoogle Scholar
  25. Reaven GM (1988) Banting lecture. Role of insulin resistance in human disease. Diabetes 37:1595–1607PubMedCrossRefGoogle Scholar
  26. Romero L, Marcussi S, Marchi-Salvador DP, Silva FP, Fuly AL, Stabeli RG, Da Silva SL, Gonzalez J, del Monte A, Soares AM (2010) Enzymatic and structural characterization of a basic phospholipase A2 from the sea anemone Condylactis gigantean. Biochimie 92:1063–1071PubMedCrossRefGoogle Scholar
  27. Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D (2005) Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev 20: CD002966Google Scholar
  28. Salpeter S, Greyber E, Pasternak G, Salpeter E (2006) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 25: CD002967Google Scholar
  29. Toyama OD, Boschero CA, Martins AM, Fonteles CM, Monteiro SH, Toyama HM (2005) Structure-function relationship of new crotamine isoform from the Crotalus durissus cascavella. Protein J 24:9–19PubMedCrossRefGoogle Scholar
  30. Trinder R (1969) Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol 22:246PubMedCrossRefGoogle Scholar
  31. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van WC (2005) Alphaglucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 18: CD003639Google Scholar
  32. Waugh N, Cummins E, Royle P, Clar C, Marien M, Richter B, Philip S (2010) Newer agents for blood glucose control in type 2 diabetes: systematic review and economic evaluation. Health Technol Assess 14:1–248Google Scholar
  33. Zhou X, De Schepper J, De Craemer D, Delhase M, Gys G, Smitz J, Hooghe-Peters EL (1998) Pituitary growth hormone release and gene expression in cafeteria-diet-induced obese rats. J Endocrinol 159:165–172PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. E. S. Martins-Santos
    • 1
  • R. R. Resende
    • 1
  • F. C. H. Pinto
    • 1
  • A. M. Soares
    • 2
  • S. Marangoni
    • 3
  • E. Oliveira
    • 4
  • F. Albericio
    • 5
    • 6
    • 7
  • S. L. Da Silva
    • 1
  1. 1.Midwest Campus (CCO)Federal University of São João Del Rei (FUSJ)DivinópolisBrazil
  2. 2.Department of Clinical Analysis of the Faculty of Pharmaceutical Sciences of Ribeirão PretoSão Paulo UniversityRibeirão PretoBrazil
  3. 3.Department of Biochemistry of Biology InstituteState University of CampinasCampinasBrazil
  4. 4.Proteomics Platform, Barcelona Science ParkUniversity of BarcelonaBarcelonaSpain
  5. 5.Institute for Research in Biomedicine, Barcelona Science ParkUniversity of BarcelonaBarcelonaSpain
  6. 6.CIBER-BBN, Networking Centre on Bioengineering Biomaterials and NanomedicineBarcelona Science ParkBarcelonaSpain
  7. 7.Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations