Carnosine Inhibits Growth of Cells Isolated from Human Glioblastoma Multiforme

  • Christof Renner
  • Anne Seyffarth
  • Susana Garcia de Arriba
  • Jürgen Meixensberger
  • Rolf Gebhardt
  • Frank Gaunitz


The present study evaluates the effect of the naturally occurring dipeptide carnosine on primary cell cultures established from patients with glioblastoma multiforme. Surgically removed tumors were used to establish primary cell cultures that were incubated for 96 h with medium supplemented with carnosine at concentrations of 20, 40 and 50 mM. Following incubation, dehydrogenase activity, cellular adenosine triphosphate concentration (ATP), caspase activity, lactate dehydrogenase (LDH) release and the rate of DNA synthesis were determined. After 96 h of carnosine treatment a significant reduction in cellular ATP and dehydrogenase activity was detected already at a concentration of 20 mM carnosine. Carnosine (50 mM) reduced ATP concentration to 42.7 ± 13.5% (n = 6) and dehydrogenase activity to 41.0 ± 19.3% (n = 6) compared to untreated cells. Additional experiments revealed no sign of enhanced apoptosis or necrosis in the presence of carnosine. However, a quantitative bromo-desoxy-uridine-based proliferation assay demonstrated a clear effect of carnosine on DNA synthesis reducing its rate down to 50% (2 cultures) and 10% (4 cultures). Therefore, it can be concluded that carnosine is obviously able to inhibit proliferation of cells derived from glioblastoma. Since it is a naturally occurring substance that appears to be non-toxic to normal tissue and is able to penetrate the blood–brain barrier it may be a candidate for a therapeutic agent that may reduce proliferation of neoplastic cells even in vivo and especially in cases of glioblastoma multiforme.


Human glioblastoma Carnosine Proliferation Cell-based assays 



We would like to thank Mr. Baran-Schmidt for technical assistance in preparing the primary cultures of glioblastomas.


  1. Baran EJ (2000) Metal complexes of carnosine. Biochemistry (Mosc) 65:789–797Google Scholar
  2. Bauer K (2005) Carnosine and homocarnosine, the forgotten, enigmatic peptides of the brain. Neurochem Res 30:1339–1345PubMedCrossRefGoogle Scholar
  3. Bauer K, Hallermayer K, Salnikow J, Kleinkauf H, Hamprecht B (1982) Biosynthesis of carnosine and related peptides by glial cells in primary culture. J Biol Chem 257:3593–3597PubMedGoogle Scholar
  4. Boldyrev A, Song R, Lawrence D, Carpenter DO (1999) Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Neuroscience 94:571–577PubMedCrossRefGoogle Scholar
  5. Boldyrev AA (2000) Problems and perspectives in studying the biological role of carnosine. Biochemistry (Mosc) 65:751–756Google Scholar
  6. Boldyrev AA, Severin SE (1990) The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzyme Regul 30:175–194PubMedCrossRefGoogle Scholar
  7. Brandes AA (2003) State-of-the-art treatment of high-grade brain tumors. Semin Oncol 30:4–9PubMedCrossRefGoogle Scholar
  8. Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, Komen J (2002) Double-blind, placebo-controlled study of l-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 17:833–837PubMedCrossRefGoogle Scholar
  9. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88PubMedCrossRefGoogle Scholar
  10. Fontana M, Pinnen F, Lucente G, Pecci L (2002) Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell Mol Life Sci 59:546–551PubMedCrossRefGoogle Scholar
  11. Gallant S, Semyonova M, Yuneva M (2000) Carnosine as a potential anti-senescence drug. Biochemistry (Mosc) 65:866–868Google Scholar
  12. Gaunitz F, Heise K (2003) HTS compatible assay for antioxidative agents using primary cultured hepatocytes. Assay Drug Dev Technol 1:469–477PubMedCrossRefGoogle Scholar
  13. Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315PubMedCrossRefGoogle Scholar
  14. Gulewitsch W, Amiradzibi S (1900) Ueber das Carnosin, eine neue organische Base des Fleischextraktes. Ber Deut Chem Ges 33:1902–1903CrossRefGoogle Scholar
  15. Hipkiss AR (1998) Carnosine, a protective, anti-ageing peptide? Int J Biochem Cell Biol 30:863–868PubMedCrossRefGoogle Scholar
  16. Hipkiss AR (2007) Could carnosine or related structures suppress Alzheimer’s disease? J Alzheimers Dis 11:229–240PubMedGoogle Scholar
  17. Hipkiss AR, Chana H (1998) Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem Biophys Res Commun 248:28–32PubMedCrossRefGoogle Scholar
  18. Hipkiss AR, Michaelis J, Syrris P (1995) Non-enzymatic glycosylation of the dipeptide l-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett 371:81–85PubMedCrossRefGoogle Scholar
  19. Hipkiss AR, Preston JE, Himsworth DT, Worthington VC, Keown M, Michaelis J, Lawrence J, Mateen A, Allende L, Eagles PA, Abbott NJ (1998a) Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Ann N Y Acad Sci 854:37–53PubMedCrossRefGoogle Scholar
  20. Hipkiss AR, Preston JE, Himswoth DT, Worthington VC, Abbot NJ (1997) Protective effects of carnosine against malondialdehyde-induced toxicity towards cultured rat brain endothelial cells. Neurosci Lett 238:135–138PubMedCrossRefGoogle Scholar
  21. Hipkiss AR, Worthington VC, Himsworth DT, Herwig W (1998b) Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim Biophys Acta 1380:46–54PubMedGoogle Scholar
  22. Holliday R, McFarland GA (1996) Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer 73:966–971PubMedGoogle Scholar
  23. Holliday R, McFarland GA (2000) A role for carnosine in cellular maintenance. Biochemistry (Mosc) 65:843–848Google Scholar
  24. Jagannathan J, Prevedello DM, Dumont AS, Laws ER (2006) Cellular signaling molecules as therapeutic targets in glioblastoma multiforme. Neurosurg Focus 20:E8PubMedCrossRefGoogle Scholar
  25. Kalyankar GD, Meister A (1959) Enzymatic synthesis of carnosine and related beta-alanyl and gamma-aminobutyryl peptides. J Biol Chem 234:3210–3218PubMedGoogle Scholar
  26. Kangas L, Gronroos M, Nieminen AL (1984) Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med Biol 62:338–343PubMedGoogle Scholar
  27. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85:3175–3179PubMedCrossRefGoogle Scholar
  28. Margolis FL (1980) Carnosine: an olfactory neuropeptide. In: Barker JL, Smith TG Jr (eds) The role of peptides in neuronal function. Marcel Decker, New York, pp 545–572Google Scholar
  29. McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212:167–175PubMedCrossRefGoogle Scholar
  30. Nadi NS, Hirsch JD, Margolis FL (1980) Laminar distribution of putative neurotransmitter amino acids and ligand binding sites in the dog olfactory bulb. J Neurochem 34:138–146PubMedCrossRefGoogle Scholar
  31. Norden AD, Wen PY (2006) Glioma therapy in adults. Neurologist 12:279–292PubMedCrossRefGoogle Scholar
  32. Pisano JJ, Wilson JD, Cohen L, Braham D, Udenfried S (1961) Isolation of gamma-aminobutyrylhistidine (homocarnosine) from brain. J Biol Chem 236:499–502PubMedGoogle Scholar
  33. Preston JE, Hipkiss AR, Himsworth DT, Romero IA, Abbott JN (1998) Toxic effects of beta-amyloid(25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci Lett 242:105–108PubMedCrossRefGoogle Scholar
  34. Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 13:379–444PubMedCrossRefGoogle Scholar
  35. Reddy VP, Garrett MR, Perry G, Smith MA (2005) Carnosine: a versatile antioxidant and antiglycating agent. Sci Aging Knowledge Environ 18:e12Google Scholar
  36. Schulz M, Hamprecht B, Kleinkauf H, Bauer K (1987) Peptide uptake by astroglia-rich brain cultures. J Neurochem 49:748–755PubMedCrossRefGoogle Scholar
  37. Scriver CR, Perry TL, Nutzenadel W (1983), In: Stanbury JB et al. (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York, pp 570–585Google Scholar
  38. Smith EC (1938) The buffering of muscle in rigor; protein, phosphate and carnosine. J Physiol 92:336–343PubMedGoogle Scholar
  39. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  40. Teuscher NS, Novotny A, Keep RF, Smith DE (2000) Functional evidence for presence of PEPT2 in rat choroid plexus: studies with glycylsarcosine. J Pharmacol Exp Ther 294:494–499PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Christof Renner
    • 1
  • Anne Seyffarth
    • 2
  • Susana Garcia de Arriba
    • 3
  • Jürgen Meixensberger
    • 1
  • Rolf Gebhardt
    • 2
  • Frank Gaunitz
    • 2
  1. 1.Klinik und Poliklinik für NeurochirurgieMedizinische Fakultät der Universität LeipzigLeipzigGermany
  2. 2.Institut für BiochemieMedizinische Fakultät der Universität LeipzigLeipzigGermany
  3. 3.Rudolf-Boehm-Institut für Pharmakologie und ToxikologieMedizinische Fakultät der Universität LeipzigLeipzigGermany

Personalised recommendations