Antiviral Activity of Antimicrobial Lipopeptide from Bacillus subtilis fmbj Against Pseudorabies Virus, Porcine Parvovirus, Newcastle Disease Virus and Infectious Bursal Disease Virus in Vitro

  • Xianqing Huang
  • Zhaoxin Lu
  • Haizhen Zhao
  • Xiaomei Bie
  • FengXia Lü
  • Shujing Yang

Bacillus subtilis fmbj can produce lipopeptide antimicrobial substance, whose main components were surfactin and fengycin. In the study, the antiviral activity of antimicrobial lipopeptides (AMLs) from B. subtilis fmbj (CGMCC No. 0934) against Pseudorabies Virus (PRV), Porcine Parvovirus (PPV), Newcastle Disease Virus (NDV) and Infectious Bursal Disease Virus (IBDV) was evaluated in vitro. The AMLs represented a direct inactivation effect on cell-free virus stocks of PRV, PPV, NDV and IBDV, and it could effectively inhibit infection and replication of the NDV and IBDV, but failed to affect PRV and PPV. The AMLs were represented higher toxicity for the Porcine Kidney (PK-15) cells (50% cytotoxic concentration (CC50) value was 32.87 μM) and lower for the Chicken Embryo Fibroblasts (CEF) cells (CC50 value was 89.16 μM). The Selectivity index of AMLs on PRV, PPV, NDV and IBDV was 1.44, 2.23, 8.40 and 12.19, respectively.


AMLs Bacillus sp. fmbj Infectious Bursal Disease Virus Newcastle Disease Virus Porcine Parvovirus Pseudorabies Virus 



The authors would like to thank the financial support from High-Tech fund of Jiangsu Province, P.R.China (BG2003311).


  1. 1.
    Albiol Matanic V.C., Castilla V., (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus Int. J. Antimicrob. Agents 23: 382–389PubMedCrossRefGoogle Scholar
  2. 2.
    Andreu D., Rivas L., (1998) Animal antimicrobial peptides: an overview Biopolymers 47: 415–433PubMedCrossRefGoogle Scholar
  3. 3.
    Aranda F.J., Teruel J.A., Ortiz A., (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A Biochim. Biophys. Acta 1713: 51–56PubMedCrossRefGoogle Scholar
  4. 4.
    Baghian A., Kousoulas K.G., (1993) Role of the Na+, K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn 1 mutation to syn+ (wild type) phenotype Virology 196: 548–556PubMedCrossRefGoogle Scholar
  5. 5.
    Batrakov S.G., Rodionova T.A., Esipov S.E., Polyakov N.B., Sheichenko V.I., Shekhovtsova N.V., Lukin S.M., Panikov N.S., Nikolaev Y.A., (2003) A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603 Biochim. Biophys. Acta 1634: 107–115PubMedGoogle Scholar
  6. 6.
    Besson F., Michel G., (1992) Biosynthesis of bacillomycin D by Bacillus subtilis Evidence for amino acid-activating enzymes by the use of affinity chromatography Fed. Eur. Biochem. Soc. 308: 18–21Google Scholar
  7. 7.
    Bie X., Lu Z., Lu F., Zeng X., (2005) Screening the main factors affecting extraction of the antimicrobial substance from Bacillus sp. fmbJ using the Plackett – Burman method World J. Microbiol. Biotechnol. 21: 925–928CrossRefGoogle Scholar
  8. 8.
    Daly N.L., Gustafson K.R., Craik D.J., (2004) The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1 FEBS Lett. 574: 69–72PubMedCrossRefGoogle Scholar
  9. 9.
    Egal M., Conrad M., Macdonald D.L., Maloy W.L., Motley M., Genco C.A., (1999) Antiviral effects of synthetic membrane-active peptides on Herpes Simplex Virus, Type 1 Int. J. Antimicrob. Agents 13: 57–60PubMedCrossRefGoogle Scholar
  10. 10.
    Giansanti F., Massucci M.T., Giardi M.F., Nozza F., Pulsinelli E., Nicolini C., Botti D., Antonini G., (2005) Antiviral activity of ovotransferrin derived peptides Biochem. Biophys. Res. Commun. 331: 69–73PubMedCrossRefGoogle Scholar
  11. 11.
    Gluliano B., Andres H., Luigi C., (2002) Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents J. Biotechnol. 5: 1–8Google Scholar
  12. 12.
    Hancock R.E., Chapple D.S., (1999) Peptide antibiotics Antimicrob. Agents Chemother. 43: 1317–1323PubMedGoogle Scholar
  13. 13.
    Hancock R.E.W., Diamond G., (2000) The role of cationic antimicrobial peptides in innate host defences Trends Microbiol. 8: 402–410PubMedCrossRefGoogle Scholar
  14. 14.
    He H., Shen B., Korshalla J., Carter G.T., (2001) Circulocins, new antibacterial lipopeptides from Bacillus circulans, J2154 Tetrahedron 57: 1189–1195CrossRefGoogle Scholar
  15. 15.
    Krajewski K., Marchand C., Long Y.O., Pommier Y., Roller P.P., (2004) Synthesis and HIV-1 integrase inhibitory activity of dimeric and tetrameric analogs of indolicidin Bioorg. Med. Chem. Lett. 14: 5595–5598PubMedCrossRefGoogle Scholar
  16. 16.
    Lorin C., Saidi H., Belaid A., Zairi A., Baleux F., Hocini H., Belec L., Hani K., Tangy F., (2005) The antimicrobial peptide Dermaseptin S4 inhibits HIV-1 infectivity in vitro Virology 334: 264–275PubMedCrossRefGoogle Scholar
  17. 17.
    Maget-Dana R., Peypoux F., (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties Toxicology 87: 151–174PubMedCrossRefGoogle Scholar
  18. 18.
    Nakayma S., Takahashi M., Hirai M., Shoda M., (1997) Isolation of new variants of surfactin by a recombinant Bacillus subtilis App. Biochem. Biotechnol. 48: 80–82Google Scholar
  19. 19.
    Nicolas P., Mor A., (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates Annu. Rev. Microbiol. 49: 277–304PubMedCrossRefGoogle Scholar
  20. 20.
    Nissen-Meyer J., Nes I.F., (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action Arch. Microbiol. 167: 67–77CrossRefGoogle Scholar
  21. 21.
    Osman M., Hoiland H., Holmsen H., Ishigaml Y., (1998) Tuning micelles of a bioactive heptapeptide biosufactant via extrinsically induced conformational transition of surfactin assemly J. Pept. Sci. 4: 449–458PubMedCrossRefGoogle Scholar
  22. 22.
    Peypoux F., Marion D., Maget-Dana R., Ptak M., Das B.C., Michel G., (1985) Structure of bacillomycin F, a new pepdolipid antibiotic of the iturin group Eur. J. Biochem. 153: 335–340PubMedCrossRefGoogle Scholar
  23. 23.
    Phae G.P., Shoda S., Kubota K., (1990) Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J. Ferment. Bioeng. 69: 1–7CrossRefGoogle Scholar
  24. 24.
    Rowley D.C., Kelly S., Jensen P., Fenical W., (2004) Synthesis and structure-activity relationships of the halovirs, antiviral natural products from a marine-derived fungus Bioorg. Med. Chem. 12: 4929–4936PubMedCrossRefGoogle Scholar
  25. 25.
    Thennarasu S., Lee D.K., Tan A., Kari U.P., Ramamoorthy A., (2005) Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843 Biochim. Biophys. Acta 1711: 49–58PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuge K., Ano T., Shoda M., (1996) Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8 Arch. Microbiol. 165: 243–251PubMedCrossRefGoogle Scholar
  27. 27.
    Wachsman M.B., Lopez E.M., Ramirez J.A., Galagovsky L.R., Coto C.E., (2000) Antiviral effect of brassinosteroids against herpes virus and arenaviruses Antiviral Chem. Chemother. 11: 71–77Google Scholar
  28. 28.
    Wong J.H., Ng T.B., (2005) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase Peptides 26: 1120–1126PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Xianqing Huang
    • 1
  • Zhaoxin Lu
    • 1
  • Haizhen Zhao
    • 1
  • Xiaomei Bie
    • 1
  • FengXia Lü
    • 1
  • Shujing Yang
    • 2
  1. 1.College of Food Science and TechnologyNanjing Agricultural UniversityNanjingP.R. China
  2. 2.Bioengineering of Shandong Boly-lely Co. Ltd.Tai’anP.R. China

Personalised recommendations