Polymyxin B and Related Cyclic Peptides Facilitate Leanness and Reduce Fat Mass and Triglyceride Content in Ageing Rats: Potential Prototype Drugs Against Obesity

  • Yoram Shechter
  • Marina Mironchik
  • Shimon Amir
  • Ben-Ami Sela
  • Haim Tsubery
  • Hailin Zheng
  • Mati Fridkin


Polymyxin B (PMXB) blocks the action of insulin on glucose uptake in vitro. In vivo, it reverses hypoglycemia induced by exogenous insulin. Here we have treated mature male rats daily with PMXB over a period of two weeks. This therapy has decreased body weight by 11%, adipose fat mass by 46% and triglyceride levels by 39%, with no indication of liver or kidney toxicity. Two suboptimal parameters, however, were a decrease in food intake in the first week of treatment and some increase in fasting glucose levels. We have screened for PMXB-analogs having less associating affinity with rat-muscle phospholipids, and revealed that the same therapy using PMXB-derived peptide (nona-PMXB) is most optimal. This PMXB-analog is devoid of antibacterial activity and is four times less toxic than PMXB. Nona-PMXB therapy lower by 10, 32, 35 and 6% body weight gain, fat mass, circulating triglycerides and fasting glucose levels, respectively, in spite of normal or even elevated food intake in nona-PMXB treated rats. In summary, we found that nona-PMXB therapy is capable if inducing leanness in mature rats, particularly at the expense of decreasing fat-mass in adipose tissue. By and large, we suggest that lowering the action of insulin, on fat build-up solely, may be a therapeutically feasible task to fight with human adiposity in the future.


Insulin obesity polymyxin B 



high-pressure liquid chromatography


insulin-receptor knockout mice




polymyxin B nonapeptide


polymyxin B



We thank Elana Friedman for typing the manuscript and Yigal Avivi for editing it. M.F. is the Lester Pearson Professor of Protein Chemistry; Y.S. is the incumbent of the C.H. Hollenberg Chair in Metabolic and Diabetes Research established by the friends and associates of Dr. C.H. Hollenberg of Toronto, Canada.


  1. Amir S., Sasson S., Kaiser N., Meyerovitch J., Shechter Y., 1987, J. Biol. Chem. 262: 6663–6667PubMedGoogle Scholar
  2. Amir S., Shechter Y., 1985, Eur. J. Pharmacol. 110: 283–285CrossRefPubMedGoogle Scholar
  3. Arner P., 2002, Diabetes Metab. Res. Rev. 18: 55–59CrossRefGoogle Scholar
  4. Arner P., 2003, Trends Endocrinol. Metab. 14: 137–145CrossRefPubMedGoogle Scholar
  5. Bergman R. N., 2001, J. Invest. Med. 49: 119–126CrossRefGoogle Scholar
  6. Bertrand H. A., Lynd F. T., Masoro E. J., Yu B. P., 1980, J. Gerontol. 35: 827–835PubMedGoogle Scholar
  7. Blueher M., Kahn B. B., Kahn C. R., 2003, Science 299: 572–574CrossRefPubMedGoogle Scholar
  8. Blueher M., Michael M. D., Peroni O. D., Ueki K., Carter N., Kahn B. B., Kahn C. R., 2002, Dev. Cell 3: 25–38CrossRefPubMedGoogle Scholar
  9. Boden G., Shulman G. I., 2002, Eur. J. Clin. Invest. 32: 14–23CrossRefPubMedGoogle Scholar
  10. Borst S. E., Bagby G. J., 2002, Metabolism 51: 1061–1064CrossRefPubMedGoogle Scholar
  11. Bruning J. C., Michael M. D., Winnay J. M., Hayashi T., Horsch D., Accili D., Goodyear L. J., Kahn C. R., 1998, Mol. Cell 2: 559–569CrossRefPubMedGoogle Scholar
  12. Chalkley S. M., Hettiarachchi M., Chisholm D. J., Kraegen E. W., 2002, Am. J. Physiol. Endocrinol. Metab. 282: E1231–E1238PubMedGoogle Scholar
  13. Colditz G. A., Willett W. C., Stampfer M. J., Manson J. E., Hennekens C. H., Arky R. A., Speizer F. E., 1990, Am. J. Epidemiol. 132: 501–513PubMedGoogle Scholar
  14. Czech M. P., 1985, Ann. Rev. Physiol. 47: 357–381CrossRefGoogle Scholar
  15. Danner R. L., Joiner K. A., Rubin M., Paterson W. H., Johnson N., Ayers K. M., Parrillo J. E., 1989, Antimicrob. Agents Chemother. 33: 1428–1434PubMedGoogle Scholar
  16. Flier J. S., 1998, J. Clin. Endocrinol. Metab. 83: 1407–1413CrossRefPubMedGoogle Scholar
  17. Gabriely I., Ma X. H., Atzmon G., Rajala M. W., Berg A. H., Scherer P., Rossetti L., Barzilai N., 2002, Diabetes 10: 2951–2958CrossRefGoogle Scholar
  18. Gupta G., Cases J. A., She L., Ma X. H., Yang X. M., Hu M., Wu J., Rossetti L., Barzilai N., 2000, Am. J. Physiol. Endocrinol. Metab. 278: E985–E991PubMedGoogle Scholar
  19. Harrison D. E., Archer J. R., Astle C. M., 1984, Proc. Natl. Acad. Sci. USA 81: 1835–1838PubMedCrossRefGoogle Scholar
  20. Hissin P. J., Foley J. E., Wardzala L. J., Karnieli E., Simpson I. A., Salans L. B., Cushman S. W., 1982, J. Clin. Invest. 70: 780–790PubMedCrossRefGoogle Scholar
  21. Hotamisiligil G. C., 2000, Int. J. Obes. Relat. Metab. Disord. 24: S23–S27CrossRefPubMedGoogle Scholar
  22. Kahn B. B., Flier J. S., 2000, J. Clin. Invest. 106: 473–481PubMedCrossRefGoogle Scholar
  23. Kahn, C. R. and Shechter, Y.: 1990, in A. G. Gilman, T. W. Rall, A. S. Nies, and P. Taylor (eds.), Goodman and Gilman Handbook of Pharmacology, New York/Oxford, Pergamon Press, pp. 1463–1495Google Scholar
  24. Kitamura T., Kahn C. R., Accili D., 2003, Ann. Rev. Physiol. 65: 313–332CrossRefGoogle Scholar
  25. Kulkarni R. N., Bruning J. C., Winnay J. M., Postic C., Magnuson M. A., Kahn C. R., 1999, Cell 96: 329–339CrossRefPubMedGoogle Scholar
  26. Ma X. H., Muzumdar R., Yang X. M., Gabriely I., Berger R., Barzilai N., 2002, J. Gerontol. A Biol. Sci. Med. Sci. 57: B225–B231PubMedGoogle Scholar
  27. Michael M. D., Kulkarni R. N., Postic C., Previs S. F., Shulman G. I., Magnuson M. A., Kahn C. R., 2000, Mol. Cell 6: 87–97CrossRefPubMedGoogle Scholar
  28. Mokdad A. H., Bowman B. A., Ford E. S., Vinicor F., Marks J. S., Koplan J. P., 2001, J. Am. Med. Assoc. 286: 1195–1200CrossRefGoogle Scholar
  29. Moody A. J., Stan M., Gliemann J., 1974, Horm. Metab. Res. 6: 12–16PubMedCrossRefGoogle Scholar
  30. Narimiya M., Azhar S., Dolkas C. B., Mondon C. E., Sims C., Wright D. W., Reaven G. M., 1984, Am. J. Physiol. 246: E397–E404PubMedGoogle Scholar
  31. Peraldi, P. and Spiegelman, B.: 1998, Mol. Cell. Biochem. 182, 169–175Google Scholar
  32. Reaven G. M., 1995, Physiol. Rev. 75: 473–486PubMedGoogle Scholar
  33. Rodbell M., 1964, J. Biol. Chem. 239: 375–380PubMedGoogle Scholar
  34. Shechter Y., 1985, Studies on Insulin Receptors: Implication for Insulin Action Academic Press Inc Orlando, FLGoogle Scholar
  35. Shechter Y., Chang K. J., Jacobs S., Cuatrecasas P., 1979, Proc. Natl. Acad. Sci. USA 76: 2720–2724PubMedCrossRefGoogle Scholar
  36. Shechter Y., Goldwaser I., Mironchik M., Fridkin M., Gefel D., 2003, Coor. Chem. Rev. 237: 3–11CrossRefGoogle Scholar
  37. Shechter Y., Meyerovitch J., Amir S., 1988, Biochem. Pharmacol. 37: 1891–1896CrossRefPubMedGoogle Scholar
  38. Shechter Y., Tsubery H., Fridkin M., 2002, J. Med. Chem. 45: 4264–4270CrossRefPubMedGoogle Scholar
  39. Steppan C. M., Bailey S. T., Bhat S., Brown E. J., Banerjee R. R., Wright C. M., Patel H. R., Ahima R. S., Lazar M. A., 2001, Nature 409: 307–312CrossRefPubMedGoogle Scholar
  40. Tsubery H., Ofek I., Cohen S., Fridkin M., 2000, Biochemistry 39: 11837–11844CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yoram Shechter
    • 1
    • 5
  • Marina Mironchik
    • 1
  • Shimon Amir
    • 3
  • Ben-Ami Sela
    • 4
  • Haim Tsubery
    • 1
    • 2
  • Hailin Zheng
    • 2
  • Mati Fridkin
    • 2
  1. 1.Department of Biological ChemistryThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Organic ChemistryThe Weizmann Institute of ScienceRehovotIsrael
  3. 3.Department of PsychologyConcordia UniversityMontreakCanada
  4. 4.Institute of Chemical PathologySheba Medical CenterTel-HashomerIsrael
  5. 5.Department of Biological ChemistryThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations