Linguistics and Philosophy

, Volume 36, Issue 2, pp 151–173

Iterating semantic automata

Research Article

Abstract

The semantic automata framework, developed originally in the 1980s, provides computational interpretations of generalized quantifiers. While recent experimental results have associated structural features of these automata with neuroanatomical demands in processing sentences with quantifiers, the theoretical framework has remained largely unexplored. In this paper, after presenting some classic results on semantic automata in a modern style, we present the first application of semantic automata to polyadic quantification, exhibiting automata for iterated quantifiers. We also discuss the role of semantic automata in linguistic theory and offer new empirical predictions for sentence processing with embedded quantifiers.

Keywords

Semantic automata Generalized quantifiers Iteration Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, techniques, and tools (2nd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  2. Barwise J., Cooper R. (1981) Generalized quantifiers and natural language. Linguistics and Philosophy 4(2): 159–219CrossRefGoogle Scholar
  3. Chater, N., & Oaksford, M. (1999). The probability heuristics model of syllogistic reasoning. Cognitive Psychology, 38(2), 191–258. ISSN 0010-0285. doi:10.1006/cogp.1998.0696. http://www.ncbi.nlm.nih.gov/pubmed/10090803.
  4. Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2), 137–167. ISSN 00199958. doi:10.1016/S0019-9958(59)90362-6.
  5. Clark, R. (2011). On the learnability of quantifiers. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (2nd ed., pp. 911–923). Amsterdam: Elsevier B.V. ISBN 9780444537263. doi:10.1016/B978-0-444-53726-3.00020-7.
  6. Dehaene S. (1997) The number sense: How the mind creates mathematics. Oxford University Press, OxfordGoogle Scholar
  7. Gierasimczuk, N. (2009). Identification through inductive verification application to monotone quantifiers. In P. Bosch, D. Gabelaia, & J. Lang (Eds.), 7th International Tbilsi symposium on logic, language, and computation, TbiLLC 2007, volume 5422 of Lecture notes in artificial intelligence (pp. 193–205).Google Scholar
  8. Gold, E. M. (1967). Language identification in the limit. Information and Control, 10(5), 447–474. ISSN 00199958. doi:10.1016/S0019-9958(67)91165-5.
  9. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001) Introduction to automata theory, languages, and computation (2nd ed.). Boston: Addison Wesley.Google Scholar
  10. Keenan E. L. (1992) Beyond the Frege boundary. Linguistics and Philosophy 15(2): 199–221CrossRefGoogle Scholar
  11. Keenan, E. L. (1996). The semantics of determiners. In S. Lappin (Ed.), The handbook of contermporary semantic theory (Number 1989, Chap. 2, pp. 41–63). Oxford: Blackwell.Google Scholar
  12. Keenan, E. L., & Westerståhl, D. (2011). Generalized quantifiers in linguistics and logic. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (2nd ed., pp. 859–910). Amsterdam: Elsevier.Google Scholar
  13. Lewis D. (1970) General semantics. Synthese 22: 18–67CrossRefGoogle Scholar
  14. Lidz, J., Pietroski, P., Halberda, J., & Hunter, T. (2011). Interface transparency and the psychosemantics of most. Natural Language Semantics, 19(3), 227–256. ISSN 0925-854X. doi:10.1007/s11050-010-9062-6.
  15. Lindström, P. (1966). First order predicate logic with generalized quantifiers. Theoria, 32, 186–195. ISSN 00224812. http://onlinelibrary.wiley.com/doi/10.1111/j.1755-2567.1966.tb00600.x/abstract.
  16. Marr D. (1982) Vision. Freeman, San FranciscoGoogle Scholar
  17. McMillan, C. T., Clark, R., Moore, P., Devita, C., & Grossman, M. (2005). Neural basis for generalized quantifier comprehension. Neuropsychologia, 43(12), 1729–1737. ISSN 0028-3932. doi:10.1016/j.neuropsychologia.2005.02.012. http://www.ncbi.nlm.nih.gov/pubmed/16154448.
  18. McMillan, C. T., Clark, R., Moore, P., & Grossman, M. (2006). Quantifier comprehension in corticobasal degeneration. Brain and Cognition, 62(3), 250–260. ISSN 0278-2626. doi:10.1016/j.bandc.2006.06.005. http://www.ncbi.nlm.nih.gov/pubmed/16949714.
  19. McNaughton, R., & Papert, S. A. (1971) Counter-free automata, volume 65 of MIT research monographs. Cambridge, MA: The MIT Press.Google Scholar
  20. Mostowski A. (1957) On a generalization of quantifiers. Fundamenta Mathematicae 44: 12–36Google Scholar
  21. Mostowski M. (1991) Divisibility quantifiers. Bulletin of the Section of Logic 20(2): 67–70Google Scholar
  22. Mostowski M. (1998) Computational semantics for monadic quantifiers. Journal of Applied Non-Classical Logics 8: 107–121CrossRefGoogle Scholar
  23. Peacocke C. (1986) Explanation in computational psychology: Language, perception and level 1.5. Mind and Language 1(2): 101–123CrossRefGoogle Scholar
  24. Peters S., Westerståhl D. (2006) Quantifiers in language and logic. Clarendon Press, OxfordGoogle Scholar
  25. Pietroski P., Lidz J., Hunter T., Halberda J. (2009) The meaning of ‘most’: Semantics, numerosity and psychology. Mind and Language 24(5): 554–585CrossRefGoogle Scholar
  26. Smolensky P. (1988) On the proper treament of connectionism. Behavioral and Brain Sciences 11: 1–23CrossRefGoogle Scholar
  27. Soames S. (1984) Linguistics and psychology. Linguistics and Philosophy 7(2): 155–179CrossRefGoogle Scholar
  28. Suppes, P. (1980). Procedural semantics. In R. Haller & W. Grassl (Eds.), Language, logic, and philosophy: Proceedings of the 4th international Wittgenstein symposium (pp. 27–35). Vienna: Hölder-Pichler-Tempsy.Google Scholar
  29. Szabolcsi, A. (2009). Quantification. Research surveys in linguistics. Cambridge: Cambridge University Press.Google Scholar
  30. Szymanik, J. (2007). A comment on a neuroimaging study of natural language quantifier comprehension. Neuropsychologia, 45(9), 2158–2160. ISSN 0028-3932. doi:10.1016/j.neuropsychologia.2007.01.016. http://www.ncbi.nlm.nih.gov/pubmed/17336347.
  31. Szymanik, J. (2010). Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguistics and Philosophy, 33(3), 215–250. ISSN 0165-0157. doi:10.1007/s10988-010-9076-z.
  32. Szymanik, J., & Zajenkowski, M. (2010a). Comprehension of simple quantifiers: Empirical evaluation of a computational model. Cognitive Science, 34(3), 521–532. ISSN 1551-6709. doi:10.1111/j.1551-6709.2009.01078.x. http://www.ncbi.nlm.nih.gov/pubmed/21564222.
  33. Szymanik, J., & Zajenkowski, M. (2010b) Quantifiers and working memory. Lecture Notes in Artificial Intelligence, 6042, 456–464.Google Scholar
  34. Szymanik, J., & Zajenkowski, M. (2011). Contribution of working memory in parity and cproportional judgments. Belgian Journal of Linguistics, 25(1), 176–194, ISSN 07745141. doi:10.1075/bjl.25.08szy. http://openurl.ingenta.com/content/xref?genre=article&issn=0774-5141&volume=25&issue=1&spage=176.
  35. van Benthem J. (1986) Essays in logical semantics. D. Reidel, DordrechtCrossRefGoogle Scholar
  36. van Benthem, J. (1989). Polyadic quantifiers. Linguistics and Philosophy, 12(4), 437–464. ISSN 0165-0157. doi:10.1007/BF00632472.
  37. Westerståhl, D. (1989). Quantifiers in formal and natural languages. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 4, pp. 1–132). Dordrecht: D. Reidel.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhilosophyStanford UniversityStanfordUSA

Personalised recommendations