Linguistics and Philosophy

, Volume 33, Issue 3, pp 215–250 | Cite as

Computational complexity of polyadic lifts of generalized quantifiers in natural language

Research Article

Abstract

We study the computational complexity of polyadic quantifiers in natural language. This type of quantification is widely used in formal semantics to model the meaning of multi-quantifier sentences. First, we show that the standard constructions that turn simple determiners into complex quantifiers, namely Boolean operations, iteration, cumulation, and resumption, are tractable. Then, we provide an insight into branching operation yielding intractable natural language multi-quantifier expressions. Next, we focus on a linguistic case study. We use computational complexity results to investigate semantic distinctions between quantified reciprocal sentences. We show a computational dichotomy between different readings of reciprocity. Finally, we go more into philosophical speculation on meaning, ambiguity and computational complexity. In particular, we investigate a possibility of revising the Strong Meaning Hypothesis with complexity aspects to better account for meaning shifts in the domain of multi-quantifier sentences. The paper not only contributes to the field of formal semantics but also illustrates how the tools of computational complexity theory might be successfully used in linguistics and philosophy with an eye towards cognitive science.

Keywords

Generalized quantifier theory Computational complexity Polyadic quantification Multi-quantifier sentences Strong Meaning Hypothesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach K. (1982) Semantic nonspecificity and mixed quantifiers. Linguistics and Philosophy 4(4): 593–605CrossRefGoogle Scholar
  2. Barwise J., Cooper R. (1981) Generalized quantifiers and natural language. Linguistics and Philosophy 4: 159–219CrossRefGoogle Scholar
  3. Beck S. (2000) The semantics of different: Comparison operator and relational adjective. Linguistics and Philosophy 23(2): 101–139CrossRefGoogle Scholar
  4. Ben-Avi G., Winter Y. (2003) Monotonicity and collective quantification. Journal of Logic, Language and Information 12(2): 127–151CrossRefGoogle Scholar
  5. Blass A., Gurevich Y. (1986) Henkin quantifiers and complete problems. Annals of Pure and Applied Logic 32: 1–16CrossRefGoogle Scholar
  6. Bott, O., & Radó , J. (2009). How to provide exactly one interpretation for every sentence, or what eye movements reveal about quantifier scope. In S. Winkler, & S. Featherson, (Eds.), The fruits of empirical linguistics, Vol. 1. Berlin: Walther de Gruyter.Google Scholar
  7. Cherniak C. (1981) Minimal rationality. Mind 90(358): 161–183CrossRefGoogle Scholar
  8. Cook, S.A. (1971). The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the third annual ACM symposium on theory of computing (pp. 151–158). ACM Press: New York, NY.Google Scholar
  9. Dalrymple M., Kanazawa M., Kim Y., Mchombo S., Peters S. (1998) Reciprocal expressions and the concept of reciprocity. Linguistics and Philosophy 21: 159–210CrossRefGoogle Scholar
  10. Frege, G. (1879). Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle.Google Scholar
  11. Frege G. (1892) Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik 100: 25–50Google Scholar
  12. Frixione M. (2001) Tractable competence. Minds and Machines 11(3): 379–397CrossRefGoogle Scholar
  13. Garey M.R., Johnson D.S. (1979) Computers and intractability. San Francisco, W. H. Freeman and Co.Google Scholar
  14. Gierasimczuk N., Szymanik J. (2009) Branching quantification vs. two-way quantification. The Journal of Semantics 26(4): 329–366CrossRefGoogle Scholar
  15. Grädel E., Gurevich Y. (1998) Metafinite model theory. Information and Computation 140(1): 26–81CrossRefGoogle Scholar
  16. Hackl M. (2009) On the grammar and processing of proportional quantifiers: Most versus more than half. Natural Language Semantics 17(1): 63–98CrossRefGoogle Scholar
  17. Hella L., Väänänen J., Westerståhl D. (1997) Definability of polyadic lifts of generalized quantifiers. Journal of Logic, Language and Information 6(3): 305–335CrossRefGoogle Scholar
  18. Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinistic methods (pp. 167–183). Oxford: Pergamon Press.Google Scholar
  19. Hintikka J. (1973) Quantifiers vs. quantification theory. Dialectica 27: 329–358CrossRefGoogle Scholar
  20. Hintikka J. (1996) Principles of mathematics revisited. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Hintikka J., Sandu G. (1997) Game-theoretical semantics. In: Benthem J., Meulen A. (eds) Handbook of logic and language. Elsevier, Amsterdam, pp 361–410CrossRefGoogle Scholar
  22. Immerman N. (1998) Descriptive complexity. Texts in Computer Science. Springer, NewyorkGoogle Scholar
  23. Jaszczolt K. (2002) Semantics and pragmatics: Meaning in language and discourse. Longman Linguistics, Library Longman, LondonGoogle Scholar
  24. Karp R.M. (1972) Reducibility among combinatorial problems. In: Miller R.E., Thatcher J.W. (eds) Complexity of computer computations. Plenum Press, New York, pp 85–103Google Scholar
  25. Keenan E. (1992) Beyond the Frege boundary. Linguistics and Philosophy 15(2): 199–221CrossRefGoogle Scholar
  26. Keenan E. (1996) Further beyond the Frege boundary. In: Does J., Eijck J. (eds) Quantifiers, logic, and language. CSLI Lecture Notes. Stanford University, California, pp 179–201Google Scholar
  27. Keenan E., Westerståhl D. (1997) Generalized quantifiers in linguistics and logic. In: Benthem J., Meulen A. (eds) Handbook of logic and language. Elsevier, Amsterdam, pp 837–895CrossRefGoogle Scholar
  28. Kempson R.M., Cormack A. (1981a) Ambiguity and quantification. Linguistics and Philosophy 4(2): 259–309CrossRefGoogle Scholar
  29. Kempson R.M., Cormack A. (1981) On ‘formal games and forms for games’. Linguistics and Philosophy 4(3): 431–435CrossRefGoogle Scholar
  30. Kempson R.M., Cormack A. (1982) Quantification and pragmatics. Linguistics and Philosophy 4(4): 607–618CrossRefGoogle Scholar
  31. Krynicki M., Mostowski M. (1995) Henkin quantifiers. In: Krynicki M., Mostowski M., Szczerba L. (eds) Quantifiers: logics, models and computation. Dordercht, Kluwer Academic Publishers, pp 193–263Google Scholar
  32. Landman, F. (2000). Against binary quantifiers. In Events and plurality. Studies in Linguistic and Philosophy (pp. 310–349). Dordercht: Kluwer Academic PublisherGoogle Scholar
  33. Levesque H.J. (1988) Logic and the complexity of reasoning. Journal of Philosophical Logic 17(4): 355–389CrossRefGoogle Scholar
  34. Lindström P. (1966) First order predicate logic with generalized quantifiers. Theoria 32: 186–195Google Scholar
  35. May R. (1985) Logical form: Its structure and derivation. The MIT Press, Linguistic Inquiry Monographs Cambridge, MAGoogle Scholar
  36. McMillan C.T., Clark R., Moore P., Devita C., Grossman M. (2005) Neural basis for generalized quantifier comprehension. Neuropsychologia 43: 1729–1737CrossRefGoogle Scholar
  37. Montague R. (1970) Pragmatics and intensional logic. Dialectica 24(4): 277–302CrossRefGoogle Scholar
  38. Moschovakis Y. (2006) A logical calculus of meaning and synonymy. Linguistics and Philosophy 29(1): 27–89CrossRefGoogle Scholar
  39. Mostowski A. (1957) On a generalization of quantifiers. Fundamenta Mathematicae 44: 12–36Google Scholar
  40. Mostowski M. (1998) Computational semantics for monadic quantifiers. Journal of Applied Non-Classical Logics 8: 107–121Google Scholar
  41. Mostowski M., Szymanik J. (2007) Computational complexity of some Ramsey quantifiers in finite models. The Bulletin of Symbolic Logic 13: 281–282Google Scholar
  42. Mostowski M., Wojtyniak D. (2004) Computational complexity of the semantics of some natural language constructions. Annals of Pure and Applied Logic 127(13): 219–227CrossRefGoogle Scholar
  43. Otto, M. (1997). Bounded variable logics and counting. A study in finite models. Volume 9 of Lecture Notes in Logic. Berlin: Springer-Verlag.Google Scholar
  44. Papadimitriou C.H. (1993) Computational complexity. Redwood City, CA, Addison WesleyGoogle Scholar
  45. Peters S., Westerståhl D. (2006) Quantifiers in language and logic. Clarendon Press, OxfordGoogle Scholar
  46. Pietroski P., Lidz J., Hunter T., Halberda J. (2009) The meaning of 'most': Semantics, numerosity, and psychology. Mind and Language 24: 54–85CrossRefGoogle Scholar
  47. Ristad E.S. (1993) The language complexity game. Artificial Intelligence. The MIT Press, Cambridge, MAGoogle Scholar
  48. Robaldo L. (2009) Independent set readings and generalized quantifiers. Journal of Philosophical Logic 39(1): 23–58CrossRefGoogle Scholar
  49. Sabato, S., & Winter, Y. (2005). From semantic restrictions to reciprocal meanings. In Proceedings of FG-MOL 2005. CSLI Publications.Google Scholar
  50. Sevenster, M. (2006). Branches of imperfect information: Logic, games, and computation. PhD thesis, Universiteit van Amsterdam. http://www.illc.uva.nl/Publications/Dissertations/DS-2006-06.text.pdf.
  51. Sher G. (1990) Ways of branching quantifiers. Linguistics and Philosophy 13: 393–442CrossRefGoogle Scholar
  52. Szymanik, J. (2009). Quantifiers in TIME and SPACE. Computational complexity of generalized quantifiers in natural language. PhD thesis, Universiteit van Amsterdam. http://www.illc.uva.nl/Publications/ResearchReports/DS-2009-01.text.pdf.
  53. Szymanik J., Zajenkowski M. (2010a) Comprehension of simple quantifiers. Empirical evaluation of a computational model. Cognitive Science: A Multidisciplinary Journal 34(3): 521–532CrossRefGoogle Scholar
  54. Szymanik, J., Zajenkowski, M. (2010b). Quantifiers and working memory. In M. Aloni, & K. Schulz, (Eds.), Amsterdam Colloquium 2009. Lecture Notes in Artificial Intelligence 6042 (pp. 456–464). Berlin: Springer.Google Scholar
  55. Tennant N. (1981) Formal games and forms for games. Linguistics and Philosophy 4(2): 311–320CrossRefGoogle Scholar
  56. Turing A. (1936) On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2): 230–265Google Scholar
  57. Väänänen J. (1997) Unary quantifiers on finite models. Journal of Logic, Language and Information 6(3): 275–304CrossRefGoogle Scholar
  58. Väänänen J. (2007). Dependence logic—a new approach to independence friendly logic. London Mathematical Society Student Texts. Cambridge: Cambridge University Press.Google Scholar
  59. van Benthem J. (1986) Essays in logical semantics. Reidel, DorderchtGoogle Scholar
  60. van Benthem J. (1989) Polyadic quantifiers. Linguistics and Philosophy 12(4): 437–464CrossRefGoogle Scholar
  61. van Rooij I. (2008) The tractable cognition thesis. Cognitive Science: A Multidisciplinary Journal 32(6): 939–984CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhilosophyStockholm UniversityStockholmSweden

Personalised recommendations