Linguistics and Philosophy

, Volume 32, Issue 1, pp 95–114

A semantic constraint on binary determiners

Research Article

Abstract

A type \({\langle{1^2, 1}\rangle}\) quantifier F is symmetric iff F(X, X)(Y) = F(Y, Y)(X). It is shown that quantifiers denoted by irreducible binary determiners in natural languages are both conservative and symmetric and not only conservative.

Keywords

Binary determiners Higher type quantifiers Symmetry Language universals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beghelli, F. (1992). Comparative quantifiers. In P. Dekker & M. Stokhof (Eds.), Proceedings of the VIII Amsterdam colloquium.Google Scholar
  2. Beghelli F. (1994) Structured quantifiers. In: Kanazawa M., Piñon C. (eds) Dynamics, polarity, and quantification. CSLI Publications, Stanford, pp 119–145Google Scholar
  3. Keenan E.L. (1987) Multiply-headed NPs. Linguistic Inquiry 18: 481–491Google Scholar
  4. Keenan E.L. (1993) Natural language, sortal reducibility and generalised quantifiers. Journal of Symbolic Logic 58(1): 314–325CrossRefGoogle Scholar
  5. Keenan E.L. (2002) Some properties of natural language quantifiers: Generalized quantifier theory. Linguistics and Philosophy 25(5–6): 627–654CrossRefGoogle Scholar
  6. Keenan E.L., Faltz L.M. (1985) Boolean semantics for natural language. D. Reidel Publishing Company, DordrechtGoogle Scholar
  7. Keenan E.L., Moss L. (1985) Generalized quantifiers and the expressive power of natural. In: Benthem J., ter Meulen A. (eds) Generalized quantifiers. Foris, Dordrecht, pp 73–124Google Scholar
  8. Keenan E.L., Stavi J. (1986) A semantic characterisation of natural language determiners. Linguistics and Philosophy 9: 253–326CrossRefGoogle Scholar
  9. Keenan E.L., Westerståhl D. (1997) Generalized quantifiers in linguistics and logic. In: Benthem J., ter Meulen A. (eds) Handbook of Logic and Language. Elsevier, Amsterdam, pp 837–893CrossRefGoogle Scholar
  10. Peters S., Westerståhl D. (2006) Quantifiers in language and logic. Clarendon Press, OxfordGoogle Scholar
  11. Zuber R. (1998) On the semantics of exclusion and inclusion phrases. In: Lawson A. (eds) SALT8. Cornell University Press, New York, pp 267–283Google Scholar
  12. Zuber R. (2004a) A class of non-conservative determiners in Polish. Linguisticae Investigationes XXVII(1: 147–165CrossRefGoogle Scholar
  13. Zuber, R. (2004b). Some remarks on syncategorematicity. In L. Hunyadi, et al. (Eds.), The eighth symposium on logic and language: Preliminary papers, Debrecen 2004, pp. 165–174.Google Scholar
  14. Zuber R. (2005) More algebras for determiners. In: Blache P., Stabler E. (eds) Logical aspects of computational linguistics 5, LNAI, (Vol. 3492). Springer-Verlag, Berlin, pp 363–378Google Scholar
  15. Zuber R. (2007) Symmetric and contrapositional quantifiers. Journal of Logic, Language and Information 16(1): 1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.CNRSParisFrance

Personalised recommendations