Linguistics and Philosophy

, Volume 30, Issue 5, pp 551–564 | Cite as

The evolution of convex categories

  • Gerhard Jäger
Research Article


Gärdenfors (Conceptual spaces, 2000) argues that the semantic domains that natural language deals with have a geometrical structure. He gives evidence that simple natural language adjectives usually denote natural properties, where a natural property is a convex region of such a “conceptual space.” In this paper I will show that this feature of natural categories need not be stipulated as basic. In fact, it can be shown to be the result of evolutionary dynamics of communicative strategies under very general assumptions.


Language evolution Evolutionary game theory Conceptual spaces Cognitive semantics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akin E., Hofbauer J. (1982). Recurrence of the unfit. Mathematical Biosciences 61, 51–62CrossRefGoogle Scholar
  2. Aurenhammer F. (1991). Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR) 23(3): 345–405CrossRefGoogle Scholar
  3. Cressman R. (2003). Evolutionary dynamics and extensive form games. MIT Press, Cambridge (MA)Google Scholar
  4. Gärdenfors P. (2000). Conceptual spaces. The MIT Press, Cambridge, MAGoogle Scholar
  5. Hofbauer J., Sigmund K. (1998). Evolutionary games and population dynamics. Cambridge University Press, CambridgeGoogle Scholar
  6. Jäger G., van Rooij R. (2007). Language structure: Psychological and social constraints. Synthese 159(1): 99–130CrossRefGoogle Scholar
  7. Lewis D. (1969). Convention. Harvard University Press, CambridgeGoogle Scholar
  8. Maynard Smith J. (1982). Evolution and the theory of games. Cambridge University Press, CambridgeGoogle Scholar
  9. Maynard Smith J., Price G.R. (1973). The logic of animal conflict. Nature 246(5427): 15–18CrossRefGoogle Scholar
  10. Metz J.A.J., Geritz S.A.H., Meszéna G., Jacobs F.J.A., van Heerwaarden J.S. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: van Strien S.J., Lunel S. M.V. (eds). Stochastic and spatial structures of dynamical systems. Amsterdam, North Holland, pp. 183–231Google Scholar
  11. Oechssler J., Riedel F. (2001). Evolutionary dynamics on infinite strategy spaces. Economic Theory 17(1): 141–162CrossRefGoogle Scholar
  12. Thomas B. (1985). On evolutionarily stable sets. Journal of Mathematical Biology 22, 105–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Linguistics and LiteratureUniversity of BielefeldBielefeldGermany

Personalised recommendations