Lithuanian Mathematical Journal

, Volume 59, Issue 1, pp 131–141 | Cite as

On the simultaneous rational approximations to real and p-adic numbers

  • Vilius StakėnasEmail author


We consider simultaneous rational approximations to real and p-adic numbers. We prove that for any irrational number α0 and p-adic number α, there are infinitely many irreducible fractions satisfying ∣α0 − m/n ∣  < 1/n2/3 − ∈ and |α0 − m/n|p < 1/n2/3 − ∈, where ∈ > 0 is an arbitrary number, and ∣ ⋅  ∣ p is the p-adic norm.


p-adic numbers rational approximations 


11J13 11J61 



  1. 1.
    G. Bachman, Introduction to p-adic Numbers and Valuation Theory, Academic Press, New York, London, 1964.Google Scholar
  2. 2.
    Y. Bugeaud, Approximation by Algebraic Numbers, Camb. TractsMath., Vol. 160, Cambridge Univ. Press, Cambridge, 2004.CrossRefGoogle Scholar
  3. 3.
    N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-Verlag, New York, 1977.Google Scholar
  4. 4.
    A. Ostrowski, Über einige Lösungen der Funktionalgleichung ϕ(x) ⋅ ϕ(y) = ϕ(xy), Acta Math., 41:271–284, 1916.MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Camb. Stud. Adv. Math., Vol. 46, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  6. 6.
    D. Zelo, Simultaneous Approximation to Real and p-adic Numbers, PhD thesis, University of Ottawa, 2008. Lith. Math.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceVilnius UniversityVilniusLithuania

Personalised recommendations