Lithuanian Mathematical Journal

, Volume 59, Issue 1, pp 81–95 | Cite as

Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function

  • Renata MacaitienėEmail author
  • Darius Šiaučiūnas


We prove that every collection of analytic functions (f1(s), . . . , fr(s)) defined on the right-hand side of the critical strip can be simultaneously approximated by shifts of Hurwitz zeta-functions (ζ(s + iγκh, α1),  … , ζ(s + iγκh, αr)), h > 0, where 0 < γ1 ≤ γ2 ≤ … are the imaginary parts of nontrivial zeros of the Riemann zeta-function ζ(s). We use the weak form of the Montgomery pair correlation conjecture and the linear independence over ℚ of the set {log(m + αj) : m ∈ 0, j = 1,  … , r}.


Hurwitz zeta-function joint universality Montgomery pair correlation conjecture Riemann zeta-function weak convergence 


11M06 11M41 



  1. 1.
    B. Bagchi, The Statistical Behaviour and Universality Properties of the RIemann Zeta-Function and Other Allied Dirichlet Series, PhD thesis, Indian Statistical Institute, Calcutta, India, 1981.Google Scholar
  2. 2.
    P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1968.zbMATHGoogle Scholar
  3. 3.
    R. Garunkštis and A. Laurinčikas, Discrete mean square of the Riemann zeta-function over imaginary parts of its zeros, Period. Math. Hung., 76(2):217–228, 2018.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. Garunkštis and A. Laurinčikas, The Riemann hypothesis and universality of the Riemann zeta-function, Math. Slovaca, 68(4):741–748, 2018.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. Garunkštis, A. Laurinčikas, and R. Macaitienė, Zeros of the Riemann zeta-function and its universality, Acta Arith., 181(2):127–142, 2017.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S.M. Gonek, Analytic Properties of Zeta and L-functions, PhD thesis, University of Michigan, USA, 1979.Google Scholar
  7. 7.
    H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin, Heidelberg, New York, 1977.Google Scholar
  8. 8.
    A. Hurwitz, Einige Eigenschaften der Dirichlet’schen Funktionen \( f(s)=\sum \frac{D}{n}\frac{1}{n^s} \), die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten, Z. Angew. Math. Phys., 27:86–101, 1882.Google Scholar
  9. 9.
    L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure Appl. Math., John Wiley & Sons, New York, 1974.Google Scholar
  10. 10.
    A. Laurinčikas, The joint universality for periodic Hurwitz zeta-functions, Analysis, 26(3):419–428, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Laurinčikas, The joint universality of Hurwitz zeta-functions, Šiauliai Math. Semin., 3:169–187, 2008.MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. Laurinčikas, A discrete universality theorem for the Hurwitz zeta-function, J. Number Theory, 143:232–247, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Laurinčikas, A general joint discrete universality theorem for Hurwitz zeta-functions, J. Number Theory, 154:44–62, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Laurinčikas, Zeros of the Riemann zeta-function in the discrete universality of the Hurwitz zeta-function, Stud. Sci. Math. Hung. (submitted for publication).Google Scholar
  15. 15.
    A. Laurinčikas and R. Garunkštis, The Lerch Zeta-Function, Kluwer, Dordrecht, Boston, London, 2002.Google Scholar
  16. 16.
    A. Laurinčikas and K. Matsumoto, The joint universality and the functional independence for Lerch zeta-functions, Nagoya Math. J., 157:211–227, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Laurinčikas and K. Matsumoto, Joint value distribution theorems on Lerch zeta-functions. II, Lith. Math. J., 46(3):271–286, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S.N. Mergelyan, Uniform approximations to functions of a complex variable, Usp. Mat. Nauk, 7(2):31–122, 1952 (in Russian).MathSciNetzbMATHGoogle Scholar
  19. 19.
    H.L. Montgomery, Topics in Multiplicative Number Theory, Lect. Notes Math., Vol. 227, Springer, Berlin, 1971.Google Scholar
  20. 20.
    H.L. Montgomery, The pair correlation of zeros of the zeta function, in H.G. Diamond (Ed.), Analytic Number Theory, Proc. Symp. Pure Math., Vol. 24, AMS, Providence, RI, 1973, pp. 181–193.Google Scholar
  21. 21.
    T. Nakamura, The existence and the non-existence of joint t-universality for Lerch zeta-functions, J. Number Theory, 125:424–441, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    J. Sander and J. Steuding, Joint universality for sums and products of Dirichlet L-functions, Analysis, 26:295–312, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Steuding, The roots of the equation ζ(s) = a are uniformly distributed modulo one, in A. Laurinčikas, E. Manstavičius, and G. Stepanauskas (Eds.), Analytic and Probabilistic Methods in Number Theory. Proceedings of the 5th International Conference in Honour of J. Kubilius, Palanga, Lithuania, September 4–10, 2011, TEV, Vilnius, 2012, pp. 243–249.Google Scholar
  24. 24.
    E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D.R. Heath-Brown, Clarendon Press, Oxford, 1986.Google Scholar
  25. 25.
    S.M. Voronin, Theorem on the “universality” of the Riemann zeta-function, Math. USSR, Izv., 9:443–453, 1975.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute, Šiauliai UniversityŠiauliaiLithuania
  2. 2.Faculty of Business and TechnologiesŠiauliai State CollegeŠiauliaiLithuania
  3. 3.Department of Computer SciencesŠiauliai UniversityŠiauliaiLithuania

Personalised recommendations