A generalization of the Voronin theorem

  • Antanas LaurinčikasEmail author
  • RenataMacaitienė
  • Darius Šiaučiūnas


The classical Voronin universality theorem asserts that a wide class of analytic functions can be approximated by shifts of the Riemann zeta-function ζ(s + iτ), τ ∈ . In the paper, we generalize this approximation for shifts ζ(s + iφ(τ)), where 𝜑(τ) has the monotonic positive derivative such that 1/𝜑′(τ) = o(τ) and φ(2τ) × maxτ ≪ t ≪ 2τ(1/φ(t)) ≪ τ as τ →∞.


Haar measure limit theorem Mergelyan theorem Riemann zeta function universality 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    B. Bagchi, The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, PhD thesis, Indian Statistical Institute, Calcutta, 1981.Google Scholar
  2. 2.
    P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.zbMATHGoogle Scholar
  3. 3.
    H. Bohr, Über das Verhalten von ζ(s) in der Halbebene σ > 1, Nachr. Ges. Wiss. Gött., Math.-Phys. Kl., 1911:409–428, 1911.zbMATHGoogle Scholar
  4. 4.
    H. Bohr and R. Courant, Neue Anwendungen der Theorie der Diophantischen Approximation auf die Riemannsche Zetafunktion, J. Reine Angew. Math., 144:249–274, 1914.MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. Dubickas and A. Laurinčikas, Distribution modulo 1 and the discrete universality of the Riemann zeta-function, Abh. Math. Semin. Univ. Hamb., 86(1):79–87, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S.M. Gonek, Analytic Properties of Zeta and L-Functions, PhD thesis, University of Michigan, 1979.Google Scholar
  7. 7.
    A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, Boston, London, 1996.CrossRefzbMATHGoogle Scholar
  8. 8.
    A. Laurinčikas, R. Macaitienė, and D. Šiaučiūnas, Uniform distribution modulo 1 and the joint universality of Dirichlet L-functions, Lith. Math. J., 56(4):529–539, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. Macaitienė, On discrete universality of the Riemann zeta-function with respect to uniformly distributed shifts, Arch. Math., 108:271–281, 2017.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Matsumoto, A survey on the theory of universality for zeta and L-functions, in M. Kaneko, Sh. Kanemitsu, and J. Liu (Eds.), Number Theory: Plowing and Starring Through High Wave Forms. Proceedings of the 7th China–Japan Seminar, Fukuoka, Japan, 28 October–1 November 2013, Ser. Number TheoryAppl., Vol. 11,World Scientific, Singapore, 2015, pp. 95–144.Google Scholar
  11. 11.
    S.N. Mergelyan, Uniform approximations to functions of a complex variable, Usp. Mat. Nauk, 7(2):31–122, 1952 (in Russian).MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ł. Pańkowski, Joint universality for dependent L-functions, Ramanujan J., 45(1):181–195, 2018.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Steuding, Value-Distribution of L-Functions, Lect. Notes Math., Vol. 1877, Springer, Berlin, 2007.Google Scholar
  14. 14.
    S.M. Voronin, Theoremon the “universality” of the Riemann zeta-function, Izv. Akad. Nauk SSSR, Ser.Mat., 39:475–486, 1975 (in Russian).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Antanas Laurinčikas
    • 1
    Email author
  • RenataMacaitienė
    • 2
    • 3
  • Darius Šiaučiūnas
    • 2
    • 3
  1. 1.Institute of Mathematics, Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Research InstituteŠiauliai UniversityŠiauliaiLithuania
  3. 3.Department of Computer SciencesŠiauliai UniversityŠiauliaiLithuania

Personalised recommendations