Computation of p-variation

Abstract

A code for computing the p-variation of a piecewise monotone function is introduced. The code is publicly available in the R environment package under the name pvar. The algorithm is based on some properties of the p-variation of a piecewise monotone function proved in this paper. The mathematical results may have their own interest.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    CRAN, available from: http://cran.r-project.org/web/packages/pvar/index.html.

  2. 2.

    G. De Marco, Representing the algebra of regulated functions as an algebra of continuous functions, Rend. Semin. Mat. Univ. Padova, 84:195–199, 1990.

  3. 3.

    B.K. Driver, Rough Path Analysis, 2013, available from: http://www.math.ucsd.edu/~bdriver/http://247A-Winter2009/lecture_notes.htm.

  4. 4.

    R.M. Dudley and R. Norvaiša, An Introduction to p-Variation and Young Integrals, with Emphasis on Sample Functions of Stochastic Processes, MaPhySto Lect. Notes, Vol. 1, Univ. Aarhus, Denmark, 1998.

  5. 5.

    R.M. Dudley and R. Norvaiša, Differentiability of Six Operators on Nonsmooth Functions and p-variation, Lect. Notes Math., Vol. 1703, Springer, Berlin, Heidelberg, 1999.

  6. 6.

    R.M. Dudley and R. Norvaiša, Concrete Functional Calculus, Springer, New York, 2010.

    Google Scholar 

  7. 7.

    P.K. Friz and N.B. Victoir, Multidimensional Stochastic Processes as Rough Paths, Cambridge Univ. Press, Cambridge, 2010.

    Google Scholar 

  8. 8.

    T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoam., 14(2):215–310, 1998.

    MathSciNet  Article  Google Scholar 

  9. 9.

    R. Norvaiša, Rough functions: p-variation, calculus, and index estimation, Lith. Math. J., 46(1):102–128, 2006.

    MathSciNet  Article  Google Scholar 

  10. 10.

    R. Norvaiša and A. Račkauskas, Convergence in law of partial sum processes in p-variation norm, Lith. Math. J., 48(2):212–227, 2008.

    MathSciNet  Article  Google Scholar 

  11. 11.

    R. Norvaiša and D.M. Salopek, Estimating the p-variation index of a sample function: An application to financial data set, Methodol. Comput. Appl. Probab., 4(1):27–53, 2002.

    MathSciNet  Article  Google Scholar 

  12. 12.

    J. Qian, The p-Variation of Partial Sum Processes and the Empirical Process, PhD thesis, Tufts University, 1997.

  13. 13.

    J. Qian, The p-variation of partial sum processes and the empirical process, Ann. Probab., 26(3):1370–1383, 1998.

    MathSciNet  Article  Google Scholar 

  14. 14.

    R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Viena, Austria, 2011, available from: http://www.R-project.org/.

  15. 15.

    N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. Phys., Mass. Inst. Techn., 3(2):72–94, 1924.

    MATH  Google Scholar 

  16. 16.

    L.C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., 67:251–282, 1936.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vygantas Butkus.

Additional information

The research supported by the Research Council of Lithuania, grant No. S-MIP-17-76.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butkus, V., Norvaiša, R. Computation of p-variation. Lith Math J 58, 360–378 (2018). https://doi.org/10.1007/s10986-018-9414-3

Download citation

MSC

  • 26A45

Keywords

  • p-variation
  • computation
  • piecewise monotone function