Lithuanian Mathematical Journal

, Volume 58, Issue 4, pp 505–515 | Cite as

Risk aggregation based on the Poisson INAR(1) process with periodic structure

  • Nannan Yuan
  • Xiang HuEmail author
  • Mi Chen


In this paper, we consider a risk model by introducing a temporal dependence between the claim numbers under periodic environment, which generalizes several discrete-time risk models. The model proposed is based on the Poisson INAR(1) process with periodic structure. We study the moment-generating function of the aggregate claims. The distribution of the aggregate claims is discussed when the individual claim size is exponentially distributed.


dependence Poisson INAR(1) process periodic structure aggregate claims 


62P05 62M10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bühlmann, Mathematical Methods in Risk Theory, Springer-Verlag, New York, 1970.Google Scholar
  2. 2.
    I. Cojocaru, Ruin probabilities in multivariate risk models with periodic common shock, Scand. Actuar. J., 2017(2):159–174, 2017.MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Cossette, E. Marceau, and V. Maumedeschamps, Discrete-time risk models based on time series for count random variables, Astin Bull., 40(1):123–150, 2010.MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Cossette, E. Marceau, and F. Toureille, Risk models based on time series for count random variables, Insur. Math. Econ., 48(1):19–28, 2011.MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Kaas, M.J. Goovaerts, J. Dhaene, and M. Denuit, Modern Actuarial Risk Theory: Using R, Springer-Verlag, Berlin, 2008.CrossRefGoogle Scholar
  6. 6.
    S.A. Klugman, H.H. Panjer, and G.E. Willmot, Loss Models: Further Topics, John Wiley & Sons, Hoboken, NJ, 2013.CrossRefGoogle Scholar
  7. 7.
    A.J. McNeil, R. Frey, and P. Embrechts, Quantitative Risk Management, Princeton Univ. Press, Princeton, 2005.Google Scholar
  8. 8.
    M. Monteiro, M.G. Scotto, and I. Pereira, Integer-valued autoregressive processes with periodic structure, J. Stat. Plann. Inference, 140(6):1529–1541, 2010.MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Morales, On a surplus process under a periodic environment: A simulation approach, N. Am. Actuar. J., 8(4): 76–89, 2004.MathSciNetCrossRefGoogle Scholar
  10. 10.
    T. Rolski, H.P. Schmidli, V. Schmidt, and J. Teugels, Stochastic Processes for Insurance and Finance, JohnWiley & Sons, Chichester, 1999.CrossRefGoogle Scholar
  11. 11.
    C.H.Weiß, Thinning operations for modeling time series of counts—a survey, AStA, Adv. Stat. Anal., 92(3):319–341, 2008.MathSciNetCrossRefGoogle Scholar
  12. 12.
    G.E. Willmot, S. Drekic, and J. Cai, Equilibrium compound distributions and stop-loss moments, Scand. Actuar. J., 2005(1):6–24, 2005.MathSciNetCrossRefGoogle Scholar
  13. 13.
    G.E. Willmot and J.K. Woo, On the class of Erlang mixtures with risk theoretic applications, N. Am. Actuar. J., 11(2):99–115, 2007.MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Zhang, Y. Liu, and B. Li, Notes on discrete compound Poisson model with applications to risk theory, Insur. Math. Econ., 59(6):325–336, 2014.MathSciNetCrossRefGoogle Scholar
  15. 15.
    L. Zhang, X. Hu, and B. Duan, Optimal reinsurance under adjustment coefficient measure in a discrete risk model based on Poisson MA(1) process, Scand. Actuar. J., 2015(5):455–467, 2015.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of FinanceZhongnan University of Economics and LawWuhanChina
  2. 2.College of Mathematics and InformaticsFujian Normal UniversityFuzhouChina

Personalised recommendations