Advertisement

Lithuanian Mathematical Journal

, Volume 58, Issue 4, pp 379–383 | Cite as

On the traction problem of classical elastostatics

  • Vincenzo CosciaEmail author
  • Giulio Starita
Article
  • 21 Downloads

Abstract

We prove that the traction problem of homogeneous and isotropic elastostatics has a unique classical solution in bounded and exterior domains of class C2 for continuous boundary data.

Keywords

elastostatics potential theory classical solutions 

MSC

74B05 74G25 74G30 35J47 35J57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Cialdea, Elastostatics with non absolutely continuous data, J. Elasticity, 23(1):13–51, 1990.MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Fichera, Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all’equilibrio di un corpo elastico, Ann. Sc. Norm. Super. Pisa, Sci. Fiz. Mat., III Ser., 4:35–99, 1950.Google Scholar
  3. 3.
    M.E. Gurtin, The linear theory of elasticity, in C.A. Truesdell (Ed.), Handbuch der Physik, Band VIa/2, Springer-Verlag, Berlin, 1972, pp. 1–296.Google Scholar
  4. 4.
    C.E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Reg. Conf. Ser. Math., No. 83, AMS, Providence, RI, 1994.Google Scholar
  5. 5.
    A. Korn, Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface, Toulouse Ann. (2), 10:165–269, 1908. Errata, Toulouse Ann. (2), 10:473, 1908.Google Scholar
  6. 6.
    G.I. Kresin and V.G. Maz’ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, Math. Surv. Monogr., Vol. 317, AMS, Providence, RI, 2012.Google Scholar
  7. 7.
    V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, and T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Ser. Appl.Math. Mech., Vol. 25, North–Holland, Amsterdam, 1979.Google Scholar
  8. 8.
    P. Maremonti and R. Russo, On the existence and uniqueness of classical solutions to the stationary Navier–Stokes equations and to the traction problem of linear elastostatics, Quad. Mat., 1:171–251, 1997.MathSciNetzbMATHGoogle Scholar
  9. 9.
    B. Scharf, Atomic representation in function spaces and applications to pointwise multipliers and diffeomorphisms, a new approach, Math, Nachr., 286(2–3):283–305, 2013.MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of FerraraFerraraItaly
  2. 2.Department of Mathematics and PhysicsUniversity of CampaniaCasertaItaly

Personalised recommendations