Abstract
In this paper, we present a class of tests for heteroskedasticity of various types in the linear regression model. These tests are based on the limit behavior of the polygonal process constructed from squared residuals. The law of test statistics under the null hypothesis is established, and the consistency is proved. By means of simulations these tests are compared with two classical tests (likelihood-ratio and Breusch-Pagan) for two types of heteroskedasticity (changed-segment and the type where the error variance is proportional to one of the components of the design matrix).
This is a preview of subscription content, log in to check access.
References
- 1.
J. K. Binkley, Finite sample behavior of tests for grouped heteroscedasticity, The Review of Economics and Statistics, 74, 563–568 (1992).
- 2.
T. S. Breusch and A. R. Pagan, A simple test for heteroscedasticity and random coefficient variation, Econometrica, 47, 1287–1294 (1979).
- 3.
J. M. Dufour, L. Khalaf, J. T. Bernard, and I. Genest, Simulation-based finite-sample tests for heteroskedasticity and ARCH effects, J. Econometrics, 122, 317–347 (2004).
- 4.
H. Glejser, A new test for heteroscedasticity, J. Amer. Statist. Assoc., 64, 316–323 (1969).
- 5.
L. G. Godfrey, C. D. Orme, and J. M. C. Santos Silva, Simulation-based tests for heteroskedasticity in linear regression models: Some further results, Econometrics J., 9, 76–97 (2006).
- 6.
S. M. Goldfeld and R. Quandt, Some tests for heteroscedasticity, J. Amer. Statist. Assoc., 60, 539–547 (1965).
- 7.
D. Hamadouche, Principe d’invariance dans les espaces hölderiens pour des variables α-mé langeantes ou associées, Pub. IRMA Lille, 37-IX (1995).
- 8.
D. Hamadouche, Weak convergence of smoothed empirical process in Hölder spaces, Statist. Probab. Lett., 36, 393–400 (1998).
- 9.
A. Račkauskas and Ch. Suquet, Necessary and sufficient condition for the functional central limit theorem in Hölder spaces, J. Theoret. Probab., 17, 221–243 (2004).
- 10.
A. Račkauskas and D. Zuokas, Off-line testing for a changed segment in the sample variance, Lith. Math. J., 45(2), 200–216 (2005).
- 11.
J. Szroeter, A class of parametric tests for heteroscedasticity in linear econometric models, Econometrica, 46, 1311–1327 (1978).
- 12.
H. White, A heteroskedasticity-consistent covariance matrix and a direct test for heteroskedasticity, Econometrica, 48, 817–838 (1980).
- 13.
L. C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Ann., 115, 581–612 (1938).
Author information
Affiliations
Additional information
Published in Lietuvos Matematikos Rinkinys, Vol. 47, No. 3, pp. 307–327, July–September, 2007.
Rights and permissions
About this article
Cite this article
Račkauskas, A., Zuokas, D. New tests of heteroskedasticity in linear regression model. Lith Math J 47, 248–265 (2007). https://doi.org/10.1007/s10986-007-0018-6
Received:
Issue Date:
Keywords
- heteroskedasticity
- FCLT
- changed segment