Lithuanian Mathematical Journal

, Volume 46, Issue 4, pp 459–474

On a sum involving Fourier coefficients of cusp forms

  • A. Sankaranarayanan


We improve the existing upper bound for the quantity |∑nxa(n2)|, where a(n2) is the n2th Hecke eigenvalue of a normalized holomorphic cusp form (Hecke eigenform) of the full modular group SL(2, ℤ), whenever the weight of the original holomorphic cusp form (Hecke eigenform) lies in a certain range.


Rankin-Selberg zeta-function symmetric square L-functions mean-value theorems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Balasubramanian, An improvement of a theorem of Titchmarsh on the mean-square of |ζ(1/2+it|, Proc. London Math. Soc., 36(3), 540–576 (1978).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Balasubramanian and K. Ramachandra, Effective and non-effective results on certain arithmetical functions, J. Number Theory, 12, 10–19 (1980).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    K. Chandrasekharan and R. Narasimhan, Functional equations with multiple Gamma factors and the average order of arithmetical functions, Ann. Math., 76, 93–136 (1962).CrossRefMathSciNetGoogle Scholar
  4. 4.
    K. Chandrasekharan and R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math Ann., 152, 30–64 (1963).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Deligne, Formes modulaires et représention ℓ-adiques, Sém. Bourbaki, (1968/69), exposés 355.Google Scholar
  6. 6.
    P. Deligne, La conjecture de Weil-I, Inst. Hautes Études Sci. Pub. Math., 43, 273–307 (1974).MathSciNetGoogle Scholar
  7. 7.
    O. M. Fomenko, Identities involving the coefficients of automorphic L-functions, Zap. Nauchn. Semin., 314, 247–256, 290 (2004).MATHGoogle Scholar
  8. 8.
    D. R. Heath-Brown, The twelfth power moment of the Riemann zeta-function, Quart. J. Math., Oxford II Series, 29, 443–462 (1978).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 112, 664–699 (1936).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    E. Hecke, Über Dirichlet-Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittlegeraden, München Akad. Sitsungsber, II, 8, 73–95 (1937).Google Scholar
  11. 11.
    M. N. Huxley and M. Jutila, Large values of Dirichlet polynomials-IV, Acta Arith., 32, 297–312 (1977).MATHMathSciNetGoogle Scholar
  12. 12.
    A. Ivić, The Riemann Zeta-function, Wiley (1985).Google Scholar
  13. 13.
    A. Ivić, On sums of Fourier coefficients of cusp form, in: IV Internat. Conf. Modern Problems of Number Theory and its Applications: Current Problem, Part II (Tula, 2001), Mosk. Gos. Univ. im. Lomonosova, Mekh-Mat. Fak., Moscow (2002), pp. 92–97 (in Russian).Google Scholar
  14. 14.
    A. Ivić, K. Matsumoto, and Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, Math Proc. Cambridge Philos. Soc., 127, 117–131 (1999).CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    A. Ivić and Y. Motohashi, The mean square of the error term for the fourth power moment of the zeta-function, in: Proc. London Math. Soc., 69(3), (1994), pp. 309–329.MathSciNetMATHGoogle Scholar
  16. 16.
    H. Iwaniec, Topics in classical automorphic forms, AMS Providence, 17, Rhode Island (1997).Google Scholar
  17. 17.
    H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions, Publ. Math. IHES., 91, 55–131 (2000).MATHMathSciNetGoogle Scholar
  18. 18.
    H. Maier and H. L. Montgomery, The sum of the Möbius function, Preprint.Google Scholar
  19. 19.
    K. Matsumoto, The mean-values and the universality of Rankin-Selberg L-functions, in: Proc. on Number Theory (Turku Conference), M. Jutila and T. Metsänkylä (Eds.), Walter de Gruyter (2001), pp. 201–221.Google Scholar
  20. 20.
    K. Matsumoto and A. Sankaranarayanan, On the mean square of standard L-functions attached to Ikeda lifts, Math. Z., (online on 23 February 2006, to appear in print).Google Scholar
  21. 21.
    H. L. Montgomery, Mean and large values of Dirichlet polynomials, Inventiones Math., 8, 334–345 (1969).MATHCrossRefGoogle Scholar
  22. 22.
    H. L. Montgomery and R. C. Vaughan, Hilberts inequality, J. London Math. Soc., 8(2), 73–82 (1974).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    K. Ramachandra, A simple proof of the mean fourth power estimate for ζ(1/2 + it) and L(1/2 + it, χ), Annali. della. Scoula Normale Superiore di Pisa, Classe di Sci., Ser IV, 1, 81–97 (1974).MathSciNetGoogle Scholar
  24. 24.
    K. Ramachandra, Application of a theorem of Montgomery and Vaughan to the zeta-function, J. London Math. Soc., 10, 482–486 (1975).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    K. Ramachandra, Some problems of analytic number Theory-I, Acta Arith., 31, 313–324 (1976).MATHMathSciNetGoogle Scholar
  26. 26.
    K. Ramachandra, Some remarks on a theorem of Montgomery and Vaughan, J. Number Theory, 11, 465–471 (1979).MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    K. Ramachandra, A remark on Perron’s formula, J. Indian Math. Soc., 65, 145–151 (1998).MATHMathSciNetGoogle Scholar
  28. 28.
    K. Ramachandra and A. Sankaranarayanan, On an asymptotic formula of Srinivasa Ramanujan, Acta Arith., 109, 349–357 (2003).MATHMathSciNetGoogle Scholar
  29. 29.
    R. A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions-I, in: Proc. Cambridge Philos. Soc., vol. 35 (1939), pp. 351–356.MATHMathSciNetGoogle Scholar
  30. 30.
    R. A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions-II, in: Proc. Cambridge Philos. Soc., vol. 35 (1939), pp. 357–372.MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Sankaranarayanan, Zeros of quadratic zeta-functions on the critical line, Acta Arith., 69, 21–38 (1995).MATHMathSciNetGoogle Scholar
  32. 32.
    A. Sankaranarayanan, Fundamental properties of symmetric square L-functions-I, Illinois J. Math., 46, 23–43 (2002).MATHMathSciNetGoogle Scholar
  33. 33.
    A. Selberg, Contributions to the theory of the Riemann zeta-function, in: Collected Papers, vol. I, Springer (1989), pp. 214–280.Google Scholar
  34. 34.
    G. Shimura, On the holomorphy of certain Dirichlet series, in: Proc. London Math. Soc., vol. 31 (1975), pp. 79–98.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., D. R. Heath-Brown (Ed.), Clarendon Press, Oxford (1986).Google Scholar
  36. 36.
    A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, 15, Berlin (1963).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. Sankaranarayanan
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbai

Personalised recommendations