Advertisement

Lithuanian Mathematical Journal

, Volume 46, Issue 4, pp 417–431 | Cite as

Continued fraction of e2 with confluent hypergeometric functions

  • T. Komatsu
Article
  • 37 Downloads

Abstract

The tanh-type, tan-type, and e-type Hurwitz continued fractions have been generalized by the author. In this paper, we study a generalized form of e2-type Hurwitz continued fractions by using confluent hypergeometric functions. We also obtain a similar type of Tasoev continued fractions.

Keywords

Hurwitz continued fractions confluent hypergeometric functions e2-type Tasoev continued fractions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Châtelet, Contribution a la théorie des fractions continues arithmétiques, Bull. Soc. Math. France, 40, 1–25 (1912).zbMATHGoogle Scholar
  2. 2.
    C. S. Davis, On some simple continued fractions connected with e, J. London Math. Soc., 20, 194–198 (1945).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Hurwitz, Über die Kettenbrüche, deren Teilnenner arithmitische Reihen bilden, Vierteljahrsschrift d. Naturforsch, Gesellschaft in Zürich, 41 (1896) = Mathematische Werke, II, Birkhäuser, Basel 276–302 (1963).Google Scholar
  4. 4.
    T. Komatsu, On Tasoev’s continued fractions, Math. Proc. Cambridge Philos. Soc., 134, 1–12 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Komatsu, On Hurwitzian and Tasoev’s continued fractions, Acta Arith., 107, 161–177 (2003).zbMATHMathSciNetGoogle Scholar
  6. 6.
    T. Komatsu, Tasoev’s continued fractions and Rogers-Ramanujan continued fractions, J. Number Theory, 109, 27–40 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    T. Komatsu, Hurwitz and Tasoev continued fractions, Monatsh. Math., 145, 47–60 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    T. Komatsu, An algorithm of infinite sums representations and Tasoev continued fractions, Math. Comp., 74, 2081–2094 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    O. Perron, Die Lehre von den Kettenbru \(\ddot c\) hen, Band I, Teubner, Stüttgart (1954).Google Scholar
  10. 10.
    G. N. Raney, On continued fractions and finite automata, Math. Ann., 206, 265–283 (1973).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge (1966).zbMATHGoogle Scholar
  12. 12.
    B. G. Tasoev, Rational approximations to certain numbers, Mat. Zametki, 67, 931–937 (2000); English transl. in Math. Notes, 67, 786–791 (2000).MathSciNetGoogle Scholar
  13. 13.
    R. F. C. Walters, Alternative derivation of some regular continued fractions, J. Austral. Math. Soc., 8, 205–212 (1968).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • T. Komatsu
    • 1
  1. 1.Department of Mathematical SciencesHirosaki UniversityHirosakiJapan

Personalised recommendations