Lithuanian Mathematical Journal

, Volume 46, Issue 3, pp 287–306 | Cite as

Detection of multiple change-points in multivariate time series

  • M. Lavielle
  • G. Teyssière


We consider the multiple change-point problem for multivariate time series, including strongly dependent processes, with an unknown number of change-points. We assume that the covariance structure of the series changes abruptly at some unknown common change-point times. The proposed adaptive method is able to detect changes in multivariate i.i.d., weakly and strongly dependent series. This adaptive method outperforms the Schwarz criteria, mainly for the case of weakly dependent data. We consider applications to multivariate series of daily stock indices returns and series generated by an artificial financial market.


adaptive methods multivariate time series change-point detection heteroskedasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Basseville and N. Nikiforov, The Detection of Abrupt Changes — Theory and Applications, Information and System Sciences Series, Prentice Hall (1993).Google Scholar
  2. 2.
    I. Berkes, E. Gombay, L. Horváth, and P. S. Kokoszka, Sequential change-point detection in GARCH(p,q) models, Econometric Theory, 20, 1140–1167 (2004).zbMATHMathSciNetGoogle Scholar
  3. 3.
    L. Birgé and P. Massart, Gaussian model selection, J. Eur. Math. Soc., 3, 203–268 (2001).zbMATHCrossRefGoogle Scholar
  4. 4.
    T. Bollerslev, Modeling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model, Rev. Econom. Statist., 72, 498–505 (1990).CrossRefGoogle Scholar
  5. 5.
    F. Boussama, Ergodicité, mélange, and estimation dans les modèles GARCH. Thèse de doctorat, Université Paris 7 (1998).Google Scholar
  6. 6.
    J. V. Braun, R. K. Braun, and H. G. Muller, Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation, Biometrika, 87, 301–314 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Brodsky and B. Darkhovsky, Nonparametric Methods in Change — Point Problems, Kluwer Academic Publishers, The Netherlands (1993).Google Scholar
  8. 8.
    J. Chen and A. K. Gupta, Parametric Statistical Change Point Analysis, Birkhäuser Verlag, Basel (2000).zbMATHGoogle Scholar
  9. 9.
    J. Chen and A. K. Gupta, Statistical inference of covariance change points in Gaussian models, Statistics, 38, 17–28 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    C.-S. J. Chu, Detecting parameter shift in GARCH models, Econometric Rev., 14, 241–266 (1995).zbMATHGoogle Scholar
  11. 11.
    M. Csörgö and L. Horváth, Limit Theorems in Change-Point Analysis, Wiley (1997).Google Scholar
  12. 12.
    R. Dalhaus, Fitting time series models to nonstationary processes, Ann. Statist., 25, 1–37 (1997).MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Doukhan, G. Teyssière, and P. Winant, A LARCH(∞) vector valued process, in: P. Bertail, P. Doukhan, and Ph. Soulier (Eds.), Dependence in Probability and Statistics, Lecture Notes in Statistics, 187, Springer (2006), pp. 245–258.Google Scholar
  14. 14.
    L. Giraitis, R. Leipus, and D. Surgailis, Recent advances in ARCH modelling, in: G. Teyssière and A. Kirman (Eds.), Long-Memory in Economics, Springer, Berlin (2005), pp. 3–38.Google Scholar
  15. 15.
    L. Giraitis and R. Leipus, Testing and estimating in the change-point problem of the spectral function, Lith. Math. J., 32(1), 20–38 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Giraitis and R. Leipus, Functional CLT for nonparametric estimates of the spectrum and change-point problem for a spectral function, Lith. Math. J., 30(4), 674–679 (1990).zbMATHMathSciNetGoogle Scholar
  17. 17.
    L. Giraitis, R. Leipus, and D. Surgailis, The change-point problem for dependent observations, J. Statist. Plann. Inference, 53, 297–310 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    C. W. J. Granger and N. Hyung, Occasional structural breaks and long-memory, Prépublication (1999).Google Scholar
  19. 19.
    D. M. Hawkins, Testing a sequence of observations for a shift in location, J. Amer. Statist. Assoc., 72, 180–186 (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    D. M. Hawkins, Fitting multiple change-point models to data, Comput. Statist. Data Anal., 37, 323–341 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Horváth, P. S. Kokoszka, and G. Teyssière, Empirical process of the squared residuals of an ARCH sequence, Ann. Statist., 29, 445–469 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Signal Processing Series, Prentice Hall (1998).Google Scholar
  23. 23.
    P. S. Kokoszka and R. Leipus, Detection and estimation of changes in regime, in: P. Doukhan, G. Oppenheim, and M. S. Taqqu (Eds.), Long-Range Dependence: Theory and Applications, Birkhauser, Boston (2003), pp. 325–337.Google Scholar
  24. 24.
    P. S. Kokoszka and R. Leipus, Change-point estimation in ARCH models, Bernoulli, 6, 513–539 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    P. S. Kokoszka and R. Leipus, Testing for parameter changes in ARCH models, Lith. Math. J., 39(2), 182–195 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    P. S. Kokoszka and G. Teyssière, Change-point detection in GARCH models: Asymptotic and bootstrap tests, Prépublication (2002).Google Scholar
  27. 27.
    M. Lavielle, Detection of multiple changes in a sequence of dependent variables, Stochastic Process. Appl., 83, 79–102 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Lavielle and C. Ludeña, Random thresholds for linear model selection, Publ. INRIA, 5572 (2005),
  29. 29.
    M. Lavielle and E. Moulines, Least-squares estimation of a unknown number of shifts in a time series, J. Time Ser. Anal., 21, 33–59 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Lavielle and G. Teyssière, Adaptive detection of multiple change-points in asset price volatility, in: G. Teyssière and A. Kirman (Eds.), Long-Memory in Economics, Springer, Berlin (2005), pp. 129–156.Google Scholar
  31. 31.
    B. B. Mandelbrot and R. L. Hudson, The Misbehavior of Markets: A Fractal View of Risk, Ruin, and Reward, Basic Books, New York (2004).Google Scholar
  32. 32.
    B. Q. Mia and L. C. Zhao, Detection of change points using rank methods, Communications in Statistics — Theory and Methods, 17, 3207–3217 (1988).MathSciNetGoogle Scholar
  33. 33.
    T. Mikosch and C. Stărică, Long-range dependence effects and ARCH modeling, in: P. Doukhan, G. Oppenheim, and M.S. Taqqu (Eds.), Long-Range Dependence: Theory and Applications, Birkhauser, Boston (2003), pp. 439–459.Google Scholar
  34. 34.
    E. Schechtman and D. A. Wolfe, Multiple change points problem — nonparametric procedures for estimation of the points of change, Communications in Statistics — Simulation and Computation, 14, 615–631 (1985).zbMATHGoogle Scholar
  35. 35.
    A. Sen and M. S. Srivastava, On tests for detecting change in the mean, Ann. Statist., 3, 96–103 (1975).MathSciNetGoogle Scholar
  36. 36.
    G. Teyssière, Interaction models for common long-range dependence in asset price volatility, in: G. Rangarajan and M. Ding (Eds.), Processes with Long Range Correlations: Theory and Applications, Lecture Notes in Physics, 621, Springer, Berlin (2003), pp. 251–269.Google Scholar
  37. 37.
    G. Teyssière, Modelling exchange rates volatility with multivariate long-memory ARCH processes, Preprint (1997).Google Scholar
  38. 38.
    G. Teyssière and P. Abry, Wavelet analysis of nonlinear long-range dependent processes. Applications to financial time series, in: G. Teyssière and A. Kirman (Eds.), Long Memory in Economics, Springer, Berlin (2005), pp. 173–238.Google Scholar
  39. 39.
    L. Ju. Vostrikova, Detection of ‘disorder’ in multidimensional random processes, Soviet Math. Dokl., 24, 55–59 (1981).zbMATHGoogle Scholar
  40. 40.
    Y. C. Yao, Estimating the number of change-points via Schwarz criterion, Statist. Probab. Lett., 6, 181–189 (1988).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Lavielle
    • 1
  • G. Teyssière
    • 2
  1. 1.Laboratoire de MathématiquesUniversité René Descartes et Université Paris-SudFrance
  2. 2.Statistique Appliqué et MOdélisation Stochastique, CESUniversité Paris 1 Panthéon-SorbonneFrance

Personalised recommendations