Lithuanian Mathematical Journal

, Volume 46, Issue 3, pp 271–286

Joint value-distribution theorems on Lerch zeta-functions. II

  • A. Laurinčikas
  • K. Matsumoto
Article

Abstract

We give corrected statements of some theorems from [5] and [6] on joint value-distribution of Lerch zeta-functions (limit theorems, universality, functional independence). We also present a new direct proof of a joint limit theorem in the space of analytic functions and an extension of a joint universality theorem.

Keywords

Lerch zeta-function limit theorem probability measure space of analytic functions support universality weak convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).MATHGoogle Scholar
  2. 2.
    H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin (1977).MATHGoogle Scholar
  3. 3.
    A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht (1996).Google Scholar
  4. 4.
    A. Laurinčikas and R. Garunkštis, The Lerch Zeta-Function, Kluwer, Dordrecht (2002).Google Scholar
  5. 5.
    A. Laurinčikas and K. Matsumoto, Joint value-distribution theorems on Lerch zeta-functions, Lith. Math. J., 38(3), 238–249 (1998).CrossRefGoogle Scholar
  6. 6.
    A. Laurinčikas and K. Matsumoto, The joint universality and the functional independence for Lerch zeta-functions, Nagoya Math. J., 157, 211–227 (2000).MathSciNetGoogle Scholar
  7. 7.
    A. Laurinčikas and K. Matsumoto, The joint universality of zeta-functions attached to certain cusp forms, Proc. Sci. Seminar Faculty Phys. Math., Šiauliai University, 5, 58–75 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. Laurinčikas
    • 1
  • K. Matsumoto
    • 2
  1. 1.Faculty of Mathematics and InformaticsVilnius UniversityVilnius
  2. 2.Graduate School of MathematicsNagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations