Advertisement

Lifetime Data Analysis

, Volume 20, Issue 3, pp 355–368 | Cite as

Performance of goodness-of-fit tests for the Cox proportional hazards model with time-varying covariates

  • Shannon Grant
  • Ying Qing Chen
  • Susanne MayEmail author
Article

Abstract

There are few readily-implemented tests for goodness-of-fit for the Cox proportional hazards model with time-varying covariates. Through simulations, we assess the power of tests by Cox (J R Stat Soc B (Methodol) 34(2):187–220, 1972), Grambsch and Therneau (Biometrika 81(3):515–526, 1994), and Lin et al. (Biometrics 62:803–812, 2006). Results show that power is highly variable depending on the time to violation of proportional hazards, the magnitude of the change in hazard ratio, and the direction of the change. Because these characteristics are unknown outside of simulation studies, none of the tests examined is expected to have high power in real applications. While all of these tests are theoretically interesting, they appear to be of limited practical value.

Keywords

Survival analysis Lack of fit Time-dependent covariates 

References

  1. Aitkin M, Laird N, Francis B (1983) A reanalysis of the Stanford heart transplant data. J Am Stat Assoc 78:264–274CrossRefGoogle Scholar
  2. Altman DG, de Stavola BL (1994) Practical problems in fitting a proportional hazards model to data with updated measurements of the covariates. Stat Med 13:301–341CrossRefGoogle Scholar
  3. Andersen PK (1992) Repeated assessment of risk factors in survival analysis. Stat Methods Med Res 1:297–315CrossRefGoogle Scholar
  4. Bender R, Augustin T, Blettner M (2005) Generating survival times to simulate Cox proportional hazards models. Stat Med 24:1713–1723CrossRefMathSciNetGoogle Scholar
  5. Breslow N (1974) Covariance analysis of censored survival data. Biometrics 30:89–100CrossRefGoogle Scholar
  6. Clark DA, Stinson EB, Griepp RB, Schroeder JS, Shumway NE, Harrison DC (1971) Cardiac transplantation in man, VI. Prognosis of patients selected for cardiac transplantation. Ann Internal Med 75:15–21CrossRefGoogle Scholar
  7. Cox DR (1972) Regression models and life tables. J R Stat Soc B (Methodol) 34(2):187–220zbMATHGoogle Scholar
  8. Crowley J, Hu M (1977) Covariance analysis of heart transplant survival data. J Am Stat Assoc 72:27–36CrossRefGoogle Scholar
  9. Fisher LD, Lin DY (1999) Time-dependent covariates in the Cox proportional-hazards regression model. Ann Rev Public Health 20:145–157CrossRefGoogle Scholar
  10. Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81(3):515–526CrossRefzbMATHMathSciNetGoogle Scholar
  11. Hosmer D, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time-to-event data. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  12. Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley-Interscience, HobokenCrossRefzbMATHGoogle Scholar
  13. Leemis L, Shih LH, Reynertson K (1990) Variate generation for accelerated life and proportional hazards models with time dependent covariates. Stat Probab Lett 10:335–339CrossRefGoogle Scholar
  14. Lin J, Zhang D, Davidian M (2006) Smoothing spline-based score tests for proportional hazards models. Biometrics 62:803–812CrossRefzbMATHMathSciNetGoogle Scholar
  15. Ng’andu N (1997) An empirical comparison of statistical tests for assessing the proportional hazards assumption of Cox’s model. Stat Med 16:611–626CrossRefGoogle Scholar
  16. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R et al (2005) Vitamin E and Donepezil for the treatment of mild cognitive impairment. N Engl J Med 352(23):2380–2388CrossRefGoogle Scholar
  17. Schoenfeld D (1980) Chi-square goodness of fit tests for the proportional hazards model. Biometrika 67:145–153CrossRefzbMATHMathSciNetGoogle Scholar
  18. Therneau TM, Grambsch PM (2000) Modeling survival data: extending the Cox model. Springer, New YorkCrossRefGoogle Scholar
  19. Zhou M (2001) Understanding the Cox regression models with time-change covariates. Am Stat 55:153–155. http://www.ms.uky.edu/~mai/research/amst.pdf. Accessed 1 Aug 2013

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of WashingtonSeattleUSA
  2. 2.Fred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.Fred Hutchinson Cancer Research CenterSeattleUSA
  4. 4.Department of BiostatisticsUniversity of WashingtonSeattleUSA

Personalised recommendations