Lifetime Data Analysis

, Volume 19, Issue 1, pp 19–32

Competing risks with missing covariates: effect of haplotypematch on hematopoietic cell transplant patients

  • Thomas H. Scheike
  • Martin J. Maiers
  • Vanderson Rocha
  • Mei-Jie Zhang


In this paper we consider a problem from hematopoietic cell transplant (HCT) studies where there is interest on assessing the effect of haplotype match for donor and patient on the cumulative incidence function for a right censored competing risks data. For the HCT study, donor’s and patient’s genotype are fully observed and matched but their haplotypes are missing. In this paper we describe how to deal with missing covariates of each individual for competing risks data. We suggest a procedure for estimating the cumulative incidence functions for a flexible class of regression models when there are missing data, and establish the large sample properties. Small sample properties are investigated using simulations in a setting that mimics the motivating haplotype matching problem. The proposed approach is then applied to the HCT study.


Binomial modeling Bone marrow transplant Competing risks Haplotype effects Haplotype match Missing covariates Inverse-censoring probability weighting Nonparametric effects Non-proportionality Regression effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen AS, Satten GA (2005) Robust testing of haplotype/disease association. BMC Genet 6(Suppl 1): S69CrossRefGoogle Scholar
  2. Allen AS, Satten GA, Tsiatis AA (2005) Locally-efficient robust estimation of haplotype-disease association in family-based studies. Biometrika 92: 559–571MathSciNetMATHCrossRefGoogle Scholar
  3. Eapen M, Rubinstein P, Zhang M-J, Stevens C, Kurtzberg J, Scaradavaou A, Loberiza FRECR, Klein JP, Horowitz MM, Wagner JE (2007) Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 369: 1947–1954CrossRefGoogle Scholar
  4. Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of polecular haplotype frequenceis in a deiploid population. Mol Biol Evol 12: 921–927Google Scholar
  5. Fallin D, Schork NJ (2000) Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet 67: 947–959CrossRefGoogle Scholar
  6. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94: 496–509MathSciNetMATHCrossRefGoogle Scholar
  7. Flanders WD, Khoury MJ, Yang QH, Austin H (2005) Test of trait—haplotype association when linkage phase is ambiguous, appropriate for matched case–control and cohort studies with competing risks. Stat Med 24: 2299–2316MathSciNetCrossRefGoogle Scholar
  8. Hawley M, Kidd K (1995) Haplo: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered 86: 409–411Google Scholar
  9. Long J, Williams R, Urbanek M (1995) An EM algorithm and testing strategy for multi-locus haplotypes. Am J Hum Genet 56: 799–810Google Scholar
  10. Petersdorf E, Malkki M, Gooley T, Martin P, Guo Z (2007) MHC haplotype matcing for unrelated hematopoietic cell transplantation. PLOS Med 4: 59–68CrossRefGoogle Scholar
  11. Scheike T, Martinussen T, Silver J (2010) Estimating haplotype effects for survival data. Biometrics 66: 705–715MathSciNetMATHCrossRefGoogle Scholar
  12. Scheike T, Martinussen T, Zhang M (2011) The additive risk model for estimation of haplotype effects. Scand J Stat 38: 409–423MathSciNetMATHGoogle Scholar
  13. Scheike TH, Zhang M-J (2008) Flexible competing risks regression modelling and goodness-of-fit. Lifetime Data Anal 14: 464–483MathSciNetMATHCrossRefGoogle Scholar
  14. Scheike TH, Zhang M-J, Gerds T (2008) Predicting cumulative incidence probability by direct binomial regression. Biometrika 95: 205–220MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thomas H. Scheike
    • 1
  • Martin J. Maiers
    • 2
  • Vanderson Rocha
    • 3
  • Mei-Jie Zhang
    • 4
  1. 1.Department of BiostatisticsUniversity of CopenhagenCopenhagenDenmark
  2. 2.National Marrow Donor ProgramMinneapolisUSA
  3. 3.Hematology Bone Marrow Transplant DepartmentHospital Saint-LouisParisFrance
  4. 4.Division of BiostatisticsMedical College of WisconsinMilwaukeeUSA

Personalised recommendations