Lifetime Data Analysis

, Volume 18, Issue 4, pp 446–469

Robust inference in discrete hazard models for randomized clinical trials


DOI: 10.1007/s10985-012-9224-6

Cite this article as:
Nguyen, V.Q. & Gillen, D.L. Lifetime Data Anal (2012) 18: 446. doi:10.1007/s10985-012-9224-6


Time-to-event data in which failures are only assessed at discrete time points are common in many clinical trials. Examples include oncology studies where events are observed through periodic screenings such as radiographic scans. When the survival endpoint is acknowledged to be discrete, common methods for the analysis of observed failure times include the discrete hazard models (e.g., the discrete-time proportional hazards and the continuation ratio model) and the proportional odds model. In this manuscript, we consider estimation of a marginal treatment effect in discrete hazard models where the constant treatment effect assumption is violated. We demonstrate that the estimator resulting from these discrete hazard models is consistent for a parameter that depends on the underlying censoring distribution. An estimator that removes the dependence on the censoring mechanism is proposed and its asymptotic distribution is derived. Basing inference on the proposed estimator allows for statistical inference that is scientifically meaningful and reproducible. Simulation is used to assess the performance of the presented methodology in finite samples.


Censoring Estimating equations Discrete survival endpoints Model misspecification Robust inference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of CaliforniaIrvineUSA

Personalised recommendations