Advertisement

Landscape Ecology

, Volume 34, Issue 11, pp 2649–2668 | Cite as

Seascape genetics and connectivity modelling for an endangered Mediterranean coral in the northern Ionian and Adriatic seas

  • Violeta López-MárquezEmail author
  • Samuel A. Cushman
  • José Templado
  • Ho Yi Wan
  • Helen M. Bothwell
  • Claudia Kruschel
  • Vesna Mačić
  • Annie Machordom
Research Article

Abstract

Context

Spatially heterogeneous oceanographic properties such as currents, waves, and biogeochemical gradients control the movement of gametes and larvae of marine species. However, it is poorly understood how such spatial dynamics may shape the genetic connectivity, diversity, and structure of marine populations.

Objectives

We applied a seascape genetics framework to evaluate the relationships between marine environmental factors and gene flow among populations of the endangered Mediterranean pillow coral (Cladocora caespitosa).

Methods

We modelled gene flow among locations in the Adriatic and northern Ionian Seas as a function of sea surface temperature, salinity, currents and geographic distance. Isolation by distance and isolation by resistance hypotheses were then compared using model optimization in a generalized linear mixed effects modelling framework.

Results

Overall genetic differentiation among locations was relatively low (FST = 0.028). We identified two genetic groups, with the northernmost location segregating from the rest of the locations, although some admixture was evident. Almost 25% of the individuals analysed were identified as putative migrants and a potential barrier to gene flow was identified between the northern and central-southern basins. The best gene flow models predicted that genetic connectivity in this species is primarily driven by the movement along the coastlines and sea surface currents.

Conclusions

A high percentage of self-recruitment and relatively low migration rates has been detected in the studied populations of C. caespitosa. Its fragmented distribution along the coast can be predicted by stepping-stone oceanographic transport by coastal currents among suitable habitat patches.

Keywords

Cladocora caespitosa Marine connectivity Linear mixed effects models Model optimization Seascape ecology Landscape genetics 

Notes

Acknowledgements

This research was funded by the European project CoCoNET “Towards COast to COast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential” from the VII FP of the European Commission (Grant Agreement No. 287844) and the Spanish Ministry of Economy and Competitiveness (Grant reference: CTM2014-57949-R). We want to thank Antheus s.r.l and many people who helped collecting samples. Thanks to Computational Biogeography and photography laboratories of the MNCN and to Melinda Modrell for the revision of the language.

Supplementary material

10980_2019_911_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Ahrens CW, Rymer PD, Stow A, Bragg J, Dillon S, Umbers KDL, Dudaniec RY (2018) The search for loci under selection: trends, biases and progress. Mol Ecol 27:1342–1356.  https://doi.org/10.1111/mec.14549 CrossRefPubMedGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Proceedings 2nd international symposium on information theory, Budapest, pp 267281Google Scholar
  3. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst—outlier method. BMC Bioinformatics 9:323.  https://doi.org/10.1186/1471-2105-9-323 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the great barrier reef, Australia. Evolution 54:1590–1605CrossRefGoogle Scholar
  5. Balkenhol N, Cushman SA, Storfer AT, Waits LP (2015) Introduction to landscape genetics—concepts, methods, applications. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP (eds) Landscape genetics: concepts, methods, applications. Wiley, UK, pp 1–7CrossRefGoogle Scholar
  6. Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830.  https://doi.org/10.1111/j.1600-0587.2009.05807.x CrossRefGoogle Scholar
  7. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome Populations Interactions CNRS UMR5 117: 5000Google Scholar
  8. Bellan-Santini D, Bellan G, Bitar G, Harmelin J-G, Pergent G (2002) Handbook for interpreting types of marine habitat for the selection of sites to be included in the national inventories of natural sites of conservation interest. UNEP-MAP RAC/SPA, Tunis, p 168Google Scholar
  9. Boero F, Foglini F, Fraschetti S, Goriup P, Macpherson E, Planes S et al (2016) CoCoNet: towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Scires It 6:1–95.  https://doi.org/10.2423/i22394303v6Sp1 CrossRefGoogle Scholar
  10. Bothwell HM, Cushman SA, Woolbright SA (2017) Conserving threatened riparian ecosystems in the American West: precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol Ecol 26:5114–5132.  https://doi.org/10.1111/mec.14281 CrossRefPubMedGoogle Scholar
  11. Brownstein MJ (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010.  https://doi.org/10.2144/96206st01 CrossRefPubMedGoogle Scholar
  12. Buonomo R, Assis J, Fernandes F, Engelen AH, Airoldi L, Serrão EA (2016) Habitat continuity and stepping stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol Ecol 26:766–780.  https://doi.org/10.1111/mec.13960 CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach, 2nd edn. Springer, New York.  https://doi.org/10.1007/b97636 CrossRefGoogle Scholar
  14. Carlson DF, Griffa A, Zambianchi E, Suaria G, Corgnati L, Magaldi MG, Poulain P-M, Russso A, Bellomo L, Mantovani C, Celentano P, Molcard A, Borghini M (2016) Observed and modeled surface Lagrangian transport between coastal regions in the Adriatic Sea with implications for marine protected areas. Cont Shelf Res 118:23–48.  https://doi.org/10.1016/j.csr.2016.02.012 CrossRefGoogle Scholar
  15. Casado-Amezúa P, García-Jiménez R, Kersting DK, Templado J, Coffroth MA, Merino P, Acevedo I, Machordom A (2011) Development of microsatellite markers as a molecular tool for conservation studies of the Mediterranean reef builder coral Cladocora caespitosa (Anthozoa, Scleractinia). J Hered 102:622–626.  https://doi.org/10.1093/jhered/esr070 CrossRefPubMedGoogle Scholar
  16. Casado-Amezúa P, Goffredo S, Templado J, Machordom A (2012) Genetic assessment of population structure and connectivity in the threatened Mediterranean coral Astroides calycularis (Scleractinia, Dendrophylliidae) at different spatial scales. Mol Ecol 21:3671–3685.  https://doi.org/10.1111/j.1365-294X.2012.05655.x CrossRefPubMedGoogle Scholar
  17. Casado-Amezúa P, Kersting DK, Linares C, Bo M, Caroselli E, Garrabou J, Cerrano C, Ozalp B, Terrón-Sigler A, Betti F (2015) Cladocora caespitosa. The IUCN Red List of Threatened Species. e.T133142A75872554. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T133142A75872554.en
  18. Casado-Amezúa P, Kersting DK, Templado J, Machordom A (2014) Regional genetic differentiation among populations of Cladocora caespitosa in the Western Mediterranean. Coral Reefs 33:1031–1040.  https://doi.org/10.1007/s00338-014-1195-5 CrossRefGoogle Scholar
  19. Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856.  https://doi.org/10.1111/mec.12650 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chefaoui RM, Casado-Amezúa P, Templado J (2017) Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa. Coral Reefs 36:1195–1209.  https://doi.org/10.1007/s00338-017-1611-8 CrossRefGoogle Scholar
  21. Clynick BG, Chapman MG, Underwood AJ (2008) Fish assemblages associated with urban structures and natural reefs in Sydney, Australia. Austral Ecol 33:140–150.  https://doi.org/10.1111/j.1442-9993.2007.01802.x CrossRefGoogle Scholar
  22. Coscia I, Robins PE, Porter JS, Malham SK, Ironside JE (2012) Modelled larval dispersal and measured gene flow: seascape genetics of the common cockle Cerastoderma edule in the southern Irish Sea. Conserv Genet 14:451.  https://doi.org/10.1007/s10592-012-0404-4 CrossRefGoogle Scholar
  23. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466.  https://doi.org/10.1146/annurev.marine.010908.163757 CrossRefPubMedGoogle Scholar
  24. Cushman SA, Elliot NB, Macdonald DW, Loveridge AJ (2016) A multi-scale assessment of population connectivity in African lions (Panthera leo). Landscape Ecol 31:1337–1353.  https://doi.org/10.1007/s10980-015-0292-3 CrossRefGoogle Scholar
  25. Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modelling. Am Nat 168:486–499.  https://doi.org/10.1086/506976 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cushman SA, Shirk AJ, Howe GT, Murphy MA, Dyer RJ, Joost S (2018) The least cost path from landscape genetics to landscape genomics: challenges and opportunities to explore NGS data in a spatially explicit context. Front Genet 9:215.  https://doi.org/10.3389/fgene.2018.00215 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cushman SA, Wasserman TN, Landguth EL, Shirk AJ (2013) Re-evaluating causal modelling with Mantel tests in landscape genetics. Diversity 5:51–72.  https://doi.org/10.3390/d5010051 CrossRefGoogle Scholar
  28. Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S (2018) Combining six genome scan melthods to detect candidate genes to salinity in the Mediterrenaean striped red mullet (Mullus surmuletus). BMC Genomics 19:217.  https://doi.org/10.1186/s12864-018-4579-z CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175CrossRefGoogle Scholar
  30. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 42:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  31. Elahi R, O’Connor MI, Byrnes JE, Dunic J, Eriksson BK, Hensel MJ, Kearns PJ (2015) Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr Biol 25:1938–1943.  https://doi.org/10.1016/j.cub.2015.05.030 CrossRefPubMedGoogle Scholar
  32. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294x.2005.02553.x CrossRefPubMedGoogle Scholar
  33. Evans RD, Ryan NM, Travers MJ, Feng M, Hitchen Y, Kennington WJ (2019) A seascape genetic analysis of a stress-tolerant coral species along the Western Australian coast. Coral Reefs 38:63–78.  https://doi.org/10.1007/s00338-018-01751-y CrossRefGoogle Scholar
  34. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN (version 3.0: an integrated software package for population genetics data analysis). Evol Bioinform 1:47–50CrossRefGoogle Scholar
  35. Ferentinos G, Kastanos N (1988) Water circulation patterns in the Otranto Straits, eastern Mediterranean. Cont Shelf Res 8:1025–1041.  https://doi.org/10.1016/0278-4343(88)90037-4 CrossRefGoogle Scholar
  36. Foll M (2012) BayeScan v2.1 User Manual. Ecology 20:1450–1462Google Scholar
  37. Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626.  https://doi.org/10.1016/j.cub.2006.06.052 CrossRefPubMedGoogle Scholar
  38. Goffredo S, Di Ceglie S, Zaccanti F (2009) Genetic differentiation of the temperate-subtropical stony coral Leptopsammia pruvoti in the Mediterranean Sea. Isr J Ecol Evol 55:99–115.  https://doi.org/10.1560/IJEE.55.2.99 CrossRefGoogle Scholar
  39. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19CrossRefGoogle Scholar
  40. Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241.  https://doi.org/10.1111/j.1461-0248.2005.00871.x CrossRefPubMedGoogle Scholar
  41. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world, vol 25. Elsevier, New York, pp 133–207Google Scholar
  42. Hedgecock D, Chow V, Waples RS (1992) Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture 108:215–232.  https://doi.org/10.1016/0044-8486(92)901008-W CrossRefGoogle Scholar
  43. Heerhartz SM, Dethier MN, Toft JD, Cordell JR, Ogston AS (2014) Effects of shoreline armoring on beach wrack subsidies to the nearshore ecotone in an estuarine fjord. Estuaries Coasts 37:1256–1268.  https://doi.org/10.1007/s12237-013-9754-5 CrossRefGoogle Scholar
  44. Jahnke M, Casagrandi R, Melià P, Schiavina M, Shultz ST, Zane L, Procaccini G (2017) Potential and realized connectivity of the seagrass Posidonia oceanica and their implication for conservation. Divers Distrib 23:1423–1434.  https://doi.org/10.1111/ddi.12633 CrossRefGoogle Scholar
  45. Jeffreys’s H (1961) Theory of probability (Oxford classic texts in the physical sciences), 3rd edn. Oxford University Press, OxfordGoogle Scholar
  46. Kersting DK, Bensoussan N, Linares C (2013a) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. PLoS ONE 8:e70820.  https://doi.org/10.1371/journal.pone.0070820 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kersting DK, Casado C, López-Legentil S, Linares C (2013b) Unexpected patterns in the sexual reproduction of the Mediterranean scleractinian coral Cladocora caespitosa. Mar Ecol Prog Ser 486:165–171.  https://doi.org/10.3354/meps10356 CrossRefGoogle Scholar
  48. Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain), NW Mediterranean: distribution, size structure and growth. Mar Ecol 33:427–436.  https://doi.org/10.1111/j.1439-0485.2011.00508.x CrossRefGoogle Scholar
  49. Kersting DK, Teixidó N, Linares C (2014) Recruitment and mortality of the temperate coral Cladocora caespitosa: implications for the recovery of endangered populations. Coral Reefs 33:403–407CrossRefGoogle Scholar
  50. Kopelman NM, Mayze J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191.  https://doi.org/10.1111/1755-0998.12387 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kružić P, Benković L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol 29:125–139.  https://doi.org/10.1111/j.1439-0485.20008.00220.x CrossRefGoogle Scholar
  52. Kružić P, Žuljević A, Nikolić V (2008) Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27:337–341.  https://doi.org/10.1007/s00338-007-0334-7 CrossRefGoogle Scholar
  53. Landguth EL, Hand BK, Glassy JM, Cushman SA, Sawaya M (2011) UNICOR: a species connectivity and corridor network simulator. Ecography 34:1–6.  https://doi.org/10.1111/j.1600-0587.2011.07149.x CrossRefGoogle Scholar
  54. Landguth EL, Holden ZA, Mahalovich MF, Cushman SA (2017) Using landscape genetics simulations for planting blister rust resistant whitebark pine in the US Northern Rocky Mountains. Front Genet 8:9.  https://doi.org/10.3389/fgene.2017.00009 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Liggins L, Treml EA, Riginos C (2013) Taking the plunge: an introduction to undertaking seascape genetic studies and using biophysical models. Geogr Compass 7:173–196.  https://doi.org/10.1111/gec3.12031 CrossRefGoogle Scholar
  56. Linnaeus C (1767) Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 2. Holmiae, Laurentii Salvii. Holmiae Stockholm, Laurentii Salvii. pp 1–532 [1766] pp 533–1327Google Scholar
  57. López-Márquez V, Templado J, Buckley D, Marino I, Boscari E, Micu D, Zane L, Machordom A (2019) Connectivity among populations of the top shell Gibbula divaricata in the Adriatic Sea. Front Genet 10:177.  https://doi.org/10.3389/fgene.2019.00177 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197.  https://doi.org/10.1016/S0169-5347(03)00008-9 CrossRefGoogle Scholar
  59. Mann KH, Lazier JRN (2006) Dynamics of marine ecosystems: biological-physical interactions in the oceans. Blackwell Publishing, Malden, MA, p 496Google Scholar
  60. Manni F, Guerar E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190.  https://doi.org/10.1353/hub.2004.0034 CrossRefPubMedGoogle Scholar
  61. Mantel N (1967) Detection of disease clustering and a generalized regression approach. Can Res 27:209–220Google Scholar
  62. Melià P, Schiavina M, Rossetto M, Gatto M, Fraschetti S, Casagrandi R (2016) Looking for hotspots of marine metacommunity connectivity: a methodological framework. Sci Rep 6:23705.  https://doi.org/10.1038/srep23705 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261.  https://doi.org/10.1111/j.1538-4632.1973.tb01011.x CrossRefGoogle Scholar
  64. Montefalcone M, Parravicini V, Vacchi M, Albertelli G, Ferrari M, Morri C, Bianchi CN (2010) Human influence on seagrass habitat fragmentation in NW Mediterranean Sea. Estuar Coast Shelf Sci 86:292–298.  https://doi.org/10.1016/j.ecss.2009.11.018 CrossRefGoogle Scholar
  65. Nicholls R, Woodroffe C, Burkett V (2016) Coastline degradation as an indicator of global change. In: Letcher TM (ed) Climate change: observed impacts on Planet Earth. Elsevier, Amsterdam, pp 309–324CrossRefGoogle Scholar
  66. Paetkau D, Slade R, Burden M, Estoup A (2004) Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65.  https://doi.org/10.1046/j.1365-294X.2004.02008.x CrossRefPubMedGoogle Scholar
  67. Paterno M, Schiavina M, Aglieri G, Ben Souissi J, Boscari E, Casagrandi R, Chassanite A, Chiantore M, Congiu L, Guarnieri G, Kruschel C, Macic V, Marino IAM, Papetti C, Patarnello T, Zane L, Melià P (2017) Population genomics meet Lagrangian simulations: oceanographic patterns and long larval duration ensure connectivity among Paracentrotus lividus populations in the Adriatic and Ionian seas. Ecol Evol 7:2463–2479.  https://doi.org/10.1002/ece3.2844 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Peakal R, Smouse PE (2006) GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  69. Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calix growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409.  https://doi.org/10.1007/s00338-005-0020-6 CrossRefGoogle Scholar
  70. Peirano A, Kružić P, Mastronuzzi G (2009) Growth of Mediterranean reef of Cladocora caespitosa (L.) in the late quaternary and climate inferences. Facies 55:325–333.  https://doi.org/10.1007/s10347-008-0177-x CrossRefGoogle Scholar
  71. Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432.  https://doi.org/10.1007/s00338-003-0330-5 CrossRefGoogle Scholar
  72. Pineda J, Hare JA, Sponaugle S (2007) Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20:22–39.  https://doi.org/10.5670/oceanog.2007.27 CrossRefGoogle Scholar
  73. Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39.  https://doi.org/10.1111/mec.12509 CrossRefPubMedGoogle Scholar
  74. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539.  https://doi.org/10.1093/jhered/esh074 CrossRefPubMedGoogle Scholar
  75. Polato N, Concepcion GT, Toonen RJ, Baums I (2010) Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata. Mol Ecol 19:4661–4677.  https://doi.org/10.1111/j.1365-294X.2010.04836.x CrossRefPubMedGoogle Scholar
  76. Poulain PM, Hariri S (2013) Transit and residence times in the surface Adriatic Sea as derived from drifter data and Lagrangian numerical simulations. Ocean Sci 9:713–729.  https://doi.org/10.5194/os-9-713-2013 CrossRefGoogle Scholar
  77. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  78. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201.  https://doi.org/10.1073/pnas.94.17.9197 CrossRefPubMedGoogle Scholar
  79. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249.  https://doi.org/10.1093/oxfordjournals.jhered.a111573 CrossRefGoogle Scholar
  80. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  81. Riginos C, Liggins L (2013) Seascape genetics: populations, individuals, and genes marooned and adrift. Geogr Compass 7:197–216.  https://doi.org/10.1111/gec3.12032 CrossRefGoogle Scholar
  82. Russo A, Artegiani A (1996) Adriatic sea hydrography. Sci Mar 60:33–43Google Scholar
  83. Schubel JR (1994) Coastal pollution and waste management, chapter 9. In: Environmental science in the coastal zone: issues for further research. The National Academies Press, Washington, DCGoogle Scholar
  84. Selkoe KA, D’Aloia CD, Crandall ED, Iacchei M, Liggins L, Puritz JB, von der Heyden S, Toonen RJ (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19.  https://doi.org/10.3354/meps11792 CrossRefGoogle Scholar
  85. Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377.  https://doi.org/10.1111/j.1467-2979.2008.00300.x CrossRefGoogle Scholar
  86. Selkoe KA, Scribner KT, Galindo HM (2015) Waterscape genetics -applications of landscape genetics to rivers, lakes and seas. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP (eds) Landscape genetics: concepts, methods, applications. Wiley, UK, pp 220–245CrossRefGoogle Scholar
  87. Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291–305.  https://doi.org/10.3354/meps09238 CrossRefGoogle Scholar
  88. Severance EG, Karl SA (2006) Contrasting population genetic structures of sympatric, mass-spawning Caribbean corals. Mar Biol 150:57–68.  https://doi.org/10.1007/s00227-006-0332-2 CrossRefGoogle Scholar
  89. Shirk AJ, Cushman SA, Waring KM, Wehenkel CA, Leal-Sáenz A, Toney C, Lopez-Sanchez CA (2018) Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. Forest Ecol Manag 411:176–186.  https://doi.org/10.1016/j.foreco.2018.01.025 CrossRefGoogle Scholar
  90. Shirk AJ, Landguth EL, Cushman SA (2017) A comparision of regression methods for model selection in individual-based landscape genetic analysis. Mol Ecol Resour 18:55–67.  https://doi.org/10.1111/1755-0998.12709 CrossRefPubMedGoogle Scholar
  91. Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619.  https://doi.org/10.1111/j.1365-294X.2010.04745.x CrossRefGoogle Scholar
  92. Siegel DA, Kinlan BP, Gaylord B, Gaines SD (2003) Lagrangian descriptions of marine larval dispersion. Mar Ecol Prog Ser 260:83–96.  https://doi.org/10.3354/meps260083 CrossRefGoogle Scholar
  93. Sponaugle S, Cowen RK, Shanks A, Morgan SG, Leis JM, Pineda J, Boehlert GW, Kingsford MJ, Lindeman KC, Grimes C, Munro L (2002) Predicting self-recruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70:341–375Google Scholar
  94. Storfer A, Murphy MA, Evans S, Golberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the “landscape” in landscape genetics. Heredity 98:128–142.  https://doi.org/10.1038/sj.hdy.6800917 CrossRefPubMedGoogle Scholar
  95. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514.  https://doi.org/10.1111/j.1365-294X.2010.04691.x CrossRefPubMedGoogle Scholar
  96. Strathmann RR, Hughes TP, Kuris AM, Lindeman KC, Morgan SG, Pandolfi JM, Warner RR (2002) Evolution of local recruitment and its consequences for marine populations. Bull Mar Sci 70:377–396Google Scholar
  97. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  98. Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HF, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JEM (2016) Global terrestrial human footprint maps for 1993-2009. Sci data 3:160067.  https://doi.org/10.1038/sdata.2016.67 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Waples RS (1990) Conservation genetics of Pacific Salmon. II. Effective population size and the rate of loss of genetic variability. J Hered 81:267–276CrossRefGoogle Scholar
  100. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: Fst ≠ 1/(4Nm + 1). Heredity 82:117–125CrossRefGoogle Scholar
  101. Woodson CB, McManus MA (2007) Foraging behaviour can influence dispersal marine organisms. Limnol Oceanogr 52:2701–2709CrossRefGoogle Scholar
  102. Yang J, Cushman SA, Song X, Yang J, Zhang P (2015) Genetic diversity and drivers of genetic differentiation of Reaumuria soongorica of the Inner Mongolia plateau in China. Plant Ecol 216:925–937.  https://doi.org/10.1007/s11258-015-0479-3 CrossRefGoogle Scholar
  103. Yang J, Cushman SA, Yang J, Yang M, Bao T (2013) Effects of climatic gradients on genetic differentiation of Caragana on the Ordos Plateau, China. Landscape Ecol 28:1729–1741.  https://doi.org/10.1007/s10980-013-9913-x CrossRefGoogle Scholar
  104. Zayasu Y, Satoh N, Shinzato C (2018) Genetic diversity of farmed and wild populations of the reef-building coral, Acropora tenuis. Restor Ecol 26:1195–1202.  https://doi.org/10.1111/rec.12687 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Museo Nacional de Ciencias Naturales (MNCN-CSIC)MadridSpain
  2. 2.USDA Forest Service Rocky Mountain Research StationFlagstaffUSA
  3. 3.School of Public and Community Health SciencesUniversity of MontanaMissoulaUSA
  4. 4.Research School of BiologyAustralian National UniversityCanberraAustralia
  5. 5.Department of Ecology, Agronomy and AquacultureUniversity of ZadarZadarCroatia
  6. 6.Institute of Marine BiologyUniversity of MontenegroKotorMontenegro

Personalised recommendations