Landscape Ecology

, Volume 34, Issue 5, pp 1045–1056 | Cite as

Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland

  • Urs G. KormannEmail author
  • Christoph Scherber
  • Teja Tscharntke
  • Péter Batáry
  • Verena Rösch
Research Article



Global change pressures (GCPs) imperil species and associated ecosystem functions, but studies investigating interactions of landscape-scale pressures remain scarce. Loss of species-rich habitat and agricultural expansion are major threats for biodiversity, but if or how these factors interactively determine community-level shifts and conservation outcomes remains unclear.


We tested whether matrix simplification (dominance of cropland) and reduced connectivity (i.e. landscape-scale habitat loss) either additively, synergistically or antagonistically cause community shifts in butterflies, a group of high conservation relevance.


We surveyed butterflies on 30 small calcareous grassland fragments (< 1 ha) in Central Germany, representing independent gradients in grassland connectivity (an index combining grassland area and proximity), and matrix quality (landscape proportion of cropland). Using proportional odds logistic regression, we assessed whether connectivity and matrix quality interactively altered the distribution of Red List statuses, and assessed effects of local scale management (mowing, grazing, short-term abandonment).


We found synergistic, conservation relevant effects: Connectivity boosted the proportion of red-listed species from 20 to 52% in crop land poor landscapes, but not in crop land rich landscapes, particularly driven by endangered and critically endangered species. Grazed sites had the lowest species richness, abundance, and proportions of conservation relevant butterflies.


Mitigation measures targeting one landscape-scale pressure only may be inefficient, particularly for red-listed species. Increasing habitat connectivity bolsters butterfly communities and potential pollination services, but only if accompanied by measures to soften the matrix. Hence, halting biodiversity losses needs better understanding and implementation of complex conservation measures at the landscape scale.


Calcareous grasslands Habitat loss Habitat fragmentation Landscape composition Red-listed species Proportional odds logistic regression 



We thank three Reviewers and Adam Hadley for their input on a previous version of this article. Financial support to UGK by the DFG Research Training Group 1644 (Scaling Problems in Statistics), to PB by the German Research Foundation (Grant No. DFG BA4438/1-1) and to VR by the MWK graduate school “Biodiversität und Gesellschaft” is acknowledged. The Division of Conservation Biology, University of Bern, provided logistical support during the writing stage of this manuscript.

Supplementary material

10980_2019_835_MOESM1_ESM.docx (106 kb)
Supplementary material 1 (DOCX 106 kb)


  1. Ås S (1999) Invasion of matrix species in small habitat patches. Conserv Ecol 3:1CrossRefGoogle Scholar
  2. Ausden M, Hall M, Pearson P, Strudwick T (2005) The effects of cattle grazing on tall-herb fen vegetation and molluscs. Biol Conserv 122:317–326CrossRefGoogle Scholar
  3. Binot-Hafke, M., Balzer, S., Becker, N., Gruttke, H., Haupt, H., Hofbauer, N., Ludwig, G., Matzke-Hajek, G., & Strauch, M. (2011) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 3: Wirbellose Tiere (Teil 1) Google Scholar
  4. Brückmann SV (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809CrossRefGoogle Scholar
  5. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809CrossRefGoogle Scholar
  6. Conradt L, Roper TJ, Thomas CD (2001) Dispersal behaviour of individuals in metapopulations of two british butterflies. Oikos 95:416–424CrossRefGoogle Scholar
  7. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evolut 22:489–496CrossRefGoogle Scholar
  8. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Ulmer, StuttgartGoogle Scholar
  9. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  10. Ernst LM, Tscharntke T, Batáry P (2017) Grassland management in agricultural vs. forested landscapes drives butterfly and bird diversity. Biol Conserv 216:51–59CrossRefGoogle Scholar
  11. Fernandez-Chacon A, Stefanescu C, Genovart M, Ferna A, Turco M, Oro D, Nichols JD, Hines JE, Pa F (2014) Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features. J Anim Ecol 83(1):276–285CrossRefPubMedGoogle Scholar
  12. Filz KJ, Engler JO, Stoffels J, Weitzel M, Schmitt T (2013) Missing the target? a critical view on butterfly conservation efforts on calcareous grasslands in south-western Germany. Biodivers Conserv 22:2223–2241CrossRefGoogle Scholar
  13. Garve E (2004) Rote Liste und Florenliste der Farn- und Blütenpflanzen in Niedersachsen und Bremen—5. Fassung, Stand 1.3. 2004. Informationsdienst Naturschutz Niedersachsen 1:1–76Google Scholar
  14. González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyörgyi H, Woyciechowski M, Vilà M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530CrossRefPubMedGoogle Scholar
  15. Habel JC, Schmitt T (2018) Vanishing of the common species: empty habitats and the role of genetic diversity. Biol Conserv 218:211–216CrossRefGoogle Scholar
  16. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  17. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758CrossRefPubMedGoogle Scholar
  18. Hillebrand H, Blasius B, Borer ET, Chase JM, Stanley W, Downing JA, Klemens B, Christopher E, Seabloom EW, Hodapp D, Larsen S, Lewandowska AM, Van De Waal DB, Ryabov AB (2018) Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol 55(1):169–184CrossRefGoogle Scholar
  19. Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S, Hothorn MT (2016) Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, ViennaGoogle Scholar
  20. Kormann U, Rösch V, Batáry P, Tscharntke T, Orci KM, Samu F, Scherber C (2015) Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib 21:1204–1217CrossRefGoogle Scholar
  21. Kormann UG, Hadley AS, Tscharntke T, Betts MG, Robinson WD, Scherber C (2018) Primary rainforest amount at the landscape scale mitigates bird biodiversity loss and biotic homogenization. J Appl Ecol 55(3):1288–1298CrossRefGoogle Scholar
  22. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900CrossRefGoogle Scholar
  23. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville Fritillary butterfly, Melitea cinxia. J Appl Ecol 65:791–801CrossRefGoogle Scholar
  25. Lobenstein, U. (2004). Rote Liste der in Niedersachsen und Bremen gefährdeten Großschmetterlinge mit Gesamtartenverzeichnis: 2. Fassung, Stand 1.8. 2004. Nieders. Landesamt für Ökologie (NLÖ)-Abt. Naturschutz, 2004Google Scholar
  26. Loos J, Kuussaari M, Ekroos J, Hanspach J, Fust P, Jackson L, Fischer J (2015) Changes in butterfly movements along a gradient of land use in farmlands of Transylvania (Romania). Landscape Ecol 30:625–635CrossRefGoogle Scholar
  27. Öckinger E, Eriksson AK, Smith HG (2006) Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol Conserv 133:291–300CrossRefGoogle Scholar
  28. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979PubMedGoogle Scholar
  29. Öckinger E, Bergman K-O, Franzén M, Kadlec T, Krauss J, Kuussaari M, Pöyry J, Smith HG, Steffan-Dewenter I, Bommarco R (2011) The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecol 27:121–131CrossRefGoogle Scholar
  30. Pollard E (1977) A method for assessing changes in the abundance of butterflies. Biol Conserv 12:115–134CrossRefGoogle Scholar
  31. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376CrossRefGoogle Scholar
  32. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010a) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  33. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010b) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  34. Sala OE, Iii FSC, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Poff NL, Sykes MT, Walker BH, Walker M (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  35. Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143(6):1405–1413CrossRefGoogle Scholar
  36. Scherber C (2015) Insect responses to interacting global change drivers in managed ecosystems. Curr Opin Insect Sci 11:56–62CrossRefPubMedGoogle Scholar
  37. Schtickzelle N, Mennechez G, Baguette M (2006) Dispersal depression with habitat fragmentation. Ecology 87:1057–1065CrossRefPubMedGoogle Scholar
  38. Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Ingolf K, Moora M, Nielsen A, Ohlem R, Petanidou T, Potts SG, Pyˇ P, Stout JC, Sykes MT, Tscheulin T, Winter M, Zobel M, Settele J (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795PubMedGoogle Scholar
  39. Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3(5):449–456CrossRefGoogle Scholar
  40. Supp SR, Ernest SKM (2014) Species-level and community-level responses to disturbance: a cross-community analysis. Ecology 95:1717–1723CrossRefPubMedGoogle Scholar
  41. Thomas JA (1991) Rare species conservation: case studies of European butterflies. The scientific management of temperate communities for conservation: the 31st Symposium of the British Ecological Society Southampton 1989, pp. 149–197Google Scholar
  42. Thomas JA (2016) Butterfly communities under threat. Science 353(6296):216–218CrossRefPubMedGoogle Scholar
  43. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685CrossRefPubMedGoogle Scholar
  44. Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318CrossRefGoogle Scholar
  45. van Swaay CAM, WallisDeVries MF, Poschlod P (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  46. Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Springer, New YorkCrossRefGoogle Scholar
  47. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Jeffcoate G, Harding P, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414(6859):65CrossRefPubMedGoogle Scholar
  48. Zulka KP, Abensperg-Traun M, Milasowszky N, Bieringer G, Gereben-Krenn B-A, Holzinger W, Hölzler G, Rabitsch W, Reischütz A, Querner P, Sauberer N, Schmitzberger I, Willner W, Wrbka T, Zechmeister H (2013) Species richness in dry grassland patches of eastern Austria: A multi-taxon study on the role of local, landscape and habitat quality variables. Agric Ecosyst Environ 182:25–36CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Urs G. Kormann
    • 1
    • 2
    • 3
    • 4
    Email author
  • Christoph Scherber
    • 1
    • 5
  • Teja Tscharntke
    • 1
  • Péter Batáry
    • 1
    • 6
  • Verena Rösch
    • 1
    • 7
  1. 1.Agroecology, University of GoettingenGöttingenGermany
  2. 2.Forest Biodiversity Research NetworkOregon State UniversityCorvallisUSA
  3. 3.Division of Conservation BiologyInstitute of Ecology and Evolution, University of BernBernSwitzerland
  4. 4.University of Applied Science BernBernSwitzerland
  5. 5.Institute of Landscape Ecology, University of MuensterMuensterGermany
  6. 6.GINOP Sustainable Ecosystems GroupMTA Centre for Ecological ResearchTihanyHungary
  7. 7.Institute for Environmental Science, University of Koblenz-LandauLandauGermany

Personalised recommendations