Skip to main content

Advertisement

Log in

Connectivity of mule deer (Odocoileus hemionus) populations in a highly fragmented urban landscape

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Urbanization is a substantial force shaping the genetic and demographic structure of natural populations. Urban development and major highways can limit animal movements, and thus gene flow, even in highly mobile species. Characterizing varying species responses to human activity and fragmentation is important for maintaining genetic continuity in wild animals and for preserving biodiversity. As one of the only common and wide-ranging large wild herbivores in much of urban North America, deer play an important ecological role in urban ecosystems, yet the genetic impacts of development on deer are not well known.

Objectives

We assessed genetic connectivity for mule deer to understand their genetic response to habitat fragmentation, due to development and highway barriers, in an increasingly urbanized landscape.

Methods

Using non-invasive sampling across a broad region of southern California, we investigated genetic structure among several natural areas that were separated by major highways and applied least-cost path modelling to determine if landscape context and highway attributes influence genetic distance for mule deer.

Results

We observed significant yet variable differentiation between subregions. We show that genetic structure corresponds with highway boundaries in certain habitat patches, and that particular landscape configurations more greatly limit gene flow between patches.

Conclusions

As a large and highly mobile species generally considered to be well adapted to human activity, mule deer nonetheless showed genetic impacts of intensive urbanization. Because of this potential vulnerability, mule deer and other ungulates may require further consideration for effective habitat management and maintenance of landscape connectivity in human-dominated landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso RS, Lyren LM, Boydston EE, Haas CD, Crooks KR (2014) An evaluation of a road expansion and wildlife connectivity mitigation project on a southern California freeway. Southwest Nat 59:181–187

    Article  Google Scholar 

  • Barr KR, Kus BE, Preston KL, Howell S, Perkins E, Vandergast AG (2015) Habitat fragmentation in coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus). Mol Ecol 24(10):2349–2363

    Article  PubMed  Google Scholar 

  • Benson JF, Mahoney PJ, Sikich JA, Serieys LE, Pollinger JP, Ernest HB, and Riley SP (2016a) Interactions between demography, genetics, and landscape connectivity increase extinction probability for a small population of large carnivores in a major metropolitan area. In: Proceedings of Royal Society B, vol. 283, no. 1837. The Royal Society, p 20160957

  • Benson JF, Sikich JA, Riley SPD (2016b) Individual and population level resource selection patterns of mountain lions preying on mule deer along an urban-wildland gradient. PLoS ONE 11(7):e0158006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchong JA, Sorin AB, Scribner KT (2013) Genetic diversity and population structure in urban white-tailed deer. J Wildl Manage 77:855–862. https://doi.org/10.1002/jwmg.521

    Article  Google Scholar 

  • Bouzat JL, Cheng HH, Lewin HA, Westemeier RL, Brawn JD, Paige KN (1998) Genetic evaluation of a demographic bottleneck in the greater prairie chicken. Conserv Biol 12(4):836–843

    Article  Google Scholar 

  • Boydston EE, Crooks KR (2013) Movement patterns of bobcats and coyotes after widening of CA-71 near CA-91 in Southern California: final report. In: U.S. Geological Survey, Sacramento, p 194

  • Brook BW, Sodhi NS, Bradshaw CJ (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23(8):453–460

    Article  PubMed  Google Scholar 

  • Burnham, K. P., Anderson, D. R., 2002. Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). Springer-Verlag, ISBN 0-387-95364-7

  • Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404(6781):990

    Article  CAS  PubMed  Google Scholar 

  • Clarke RT, Rothery Peter, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric, Biol, Environ Stat 7:361

    Article  Google Scholar 

  • Coe PK, Nielson RM, Jackson DH, Cupples JB, Seidel NE, Johnson BK, Gregory SC, Bjornstrom GA, Larkins AN, Speten DA (2015) Identifying migration corridors of mule deer threatened by highway development. Wildl Soc Bull 39(2):256–267

    Article  Google Scholar 

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13(9):2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Crawford JC, Quinn AD, Williams DM, Rudolph BA, Scribner KT, Porter WF (2018) Fine-scale spatial genetic structure of deer in a suburban landscape. J Wildl Manage 82(3):596–607

    Article  Google Scholar 

  • Cullingham CI, Merrill EH, Pybus MJ, Bollinger TK, Wilson GA, Coltman DW (2011) Broad and fine-scale genetic analysis of white-tailed deer populations: estimating the relative risk of chronic wasting disease spread. Evol Appl 4(1):116–131

    Article  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res. 14:209–214

    Article  CAS  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4(2):359–361

    Article  Google Scholar 

  • Eldridge MD, King JM, Loupis AK, Spencer P, Taylor AC, Pope LC, Hall GP (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed Rock-Wallaby. Conserv Biol 13(3):531–541

    Article  Google Scholar 

  • Epps CW, Palsbøll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8(10):1029–1038

    Article  Google Scholar 

  • Ernest HB, Vickers TW, Morrison SA, Buchalski MR, Boyce WM (2014) Fractured genetic connectivity threatens a southern California puma (Puma concolor) population. PLoS ONE 9(10):e107985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esri (2012) ArcGIS Desktop Release 10.1. Environmental Systems Resource Institute, Redlands. http://www.esri.com/

  • Esri (2014) ArcGIS Desktop Release 10.3. Environmental Systems Resource Institute, Redlands. http://www.esri.com/

  • Etherington TR, Holland EP (2013) Least-cost path length versus accumulated-cost as connectivity measures. Landscape Ecol 28:1223–1229

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Evans J, Oakleaf J, Cushman S and Theobald D (2014) An ArcGIS toolbox for surface gradient and geomorphometric modeling, version 2.0-0, Laramie. http://evansmurphywix.com/evansspatial

  • Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21(14):3445–3457

    Article  CAS  PubMed  Google Scholar 

  • Gustafson KD, Vickers TW, Boyce WM, Ernest HB (2017) A single migrant enhances the genetic diversity of an inbred puma population. R Soc Open Sci 4(5):170115

    Article  PubMed  PubMed Central  Google Scholar 

  • Harveson PM, Lopez RR, Collier BA, Silvy NJ (2007) Impacts of urbanization on Florida Key deer behavior and population dynamics. Biol Conserv 134(3):321–331

    Article  Google Scholar 

  • Herkert JR (1994) The effects of habitat fragmentation on midwestern grassland bird communities. Ecol Appl 4(3):461–471

    Article  Google Scholar 

  • Hobbs NT (1996) Modification of ecosystems by ungulates. J Wildl Manage 60:695–713

    Article  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531

    Article  Google Scholar 

  • Hunter RD, Fisher RN, Crooks KR (2003) Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability. Nat Areas J 23(4):302–314

    Google Scholar 

  • Ito TY, Lhagvasuren B, Tsunekawa A, Shinoda M, Takatsuki S, Buuveibaatar B, Chimeddorj B (2013) Fragmentation of the habitat of wild ungulates by anthropogenic barriers in Mongolia. PLoS ONE 8(2):e56995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20(4):692–705

    Article  PubMed  Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M, Belden RC, McBride R, Jansen D, Lotz M, Shindle D, Howard J (2010) Genetic restoration of the Florida panther. Science 329(5999):1641–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. https://doi.org/10.7717/peerj.281

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller I, Largiader CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc Lond B 270:1513

    Article  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17(5):230–241

    Article  Google Scholar 

  • Koen EL, Tosa MI, Nielsen CK, Schauber EM (2017) Does landscape connectivity shape local and global social network structure in white-tailed deer. PLoS ONE 12(3):e0173570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziej K, Theissinger K, Brün J, Schulz HK, Schulz R (2012) Determination of the minimum number of microsatellite markers for individual genotyping in wild boar (Sus scrofa) using a test with close relatives. Eur J Wildl Res 58(3):621–628

    Article  Google Scholar 

  • LANDFIRE (2011) LANDFIRE 1.1.0—existing vegetation height and type layers, LANDFIRE (ed). U.S. Department of Agriculture and U.S. Department of the Interior

  • Latch EK, Heffelfinger JR, Fike JA, Rhodes J (2009) Species-wide phylogeography of North American mule deer (Odocoileus hemionus): cryptic glacial refugia and postglacial recolonization. Mol Ecol 18(8):1730–1745

    Article  PubMed  Google Scholar 

  • Latch EK, Reding DM, Heffelfinger JR, Alcalá-Galván CH, Rhodes OE (2014) Range-wide analysis of genetic structure in a widespread, highly mobile species (Odocoileus hemionus) reveals the importance of historical biogeography. Mol Ecol 23(13):3171–3190

    Article  PubMed  Google Scholar 

  • Lee JS, Ruell EW, Boydston EE, Lyren LM, Alonso RS, Troyer JL, Crooks KR, VandeWoude SUE (2012) Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol Ecol 21(7):1617–1631

    Article  PubMed  Google Scholar 

  • Mager KH, Colson KE, Hundertmark KJ (2013) High genetic connectivity and introgression from domestic reindeer characterize northern Alaska caribou herds. Conserv Genet 14(6):1111–1123

    Article  Google Scholar 

  • McClure ML, Dickson BG, Nicholson KL (2017) Modeling connectivity to identify current and future anthropogenic barriers to movement of large carnivores: a case study in the American Southwest. Ecol Evol 7(11):3762–3772

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitelberg A (2010) Social structure and genetic connectivity in the San Diego southern mule deer. Master’s thesis, San Diego State University. San Diego, California

  • Mitelberg A, Vandergast AG (2016) Non-invasive genetic sampling of southern mule deer (Odocoileus hemionus fuliginatus) reveals limited movement across California State route 67 in San Diego county. West Wildl 3:8–18

    Google Scholar 

  • Mora C, Sale PF (2011) Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Mar Ecol Prog Ser 434:251–266

    Article  Google Scholar 

  • Munshi-South J, Kharchenko K (2010) Rapid, pervasive genetic differentiation of urban white-footed mouse (Peromyscus leucopus) populations in New York City. Mol Ecol 19(19):4242–4254

    Article  PubMed  Google Scholar 

  • Newman BJ, Ladd P, Brundrett M, Dixon KW (2013) Effects of habitat fragmentation on plant reproductive success and population viability at the landscape and habitat scale. Biol Cons 159:16–23

    Article  Google Scholar 

  • Ng SJ, Dole JW, Sauvajot RM, Riley SP, Valone TJ (2004) Use of highway undercrossings by wildlife in southern California. Biol Conserv 115(3):499–507

    Article  Google Scholar 

  • Nicholson MC, Bowyer RT, Kie JG (1997) Habitat selection and survival of mule deer: tradeoffs associated with migration. J Mamm 78(2):483–504

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pease KM, Freedman AH, Pollinger JP, McCormack JE, Buermann W, Rodzen J, Banks J, Meredith E, Bleich VC, Schaefer RJ, Jones K (2009) Landscape genetics of California mule deer (Odocoileus hemionus): the roles of ecological and historical factors in generating differentiation. Mol Ecol 18(9):1848–1862

    Article  PubMed  Google Scholar 

  • Poessel SA, Burdett CL, Boydston EE, Lyren LM, Alonso RS, Fisher RN, Crooks KR (2014) Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape. Biol Conserv 180:224–232

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/

  • Riley SP, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) FAST-TRACK: a southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15(7):1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Riley SP, Serieys LE, Pollinger JP, Sikich JA, Dalbeck L, Wayne RK, Ernest HB (2014) Individual behaviors dominate the dynamics of an urban mountain lion population isolated by roads. Curr Biol 24(17):1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Robinson SJ, Samuel MD, Lopez DL, Shelton P (2012) The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States. Mol Ecol 21:4190–4205

    Article  PubMed  Google Scholar 

  • Rollins MG (2009) LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildl Fire 18:235–249

    Article  Google Scholar 

  • Rooney TP, Waller DM (2003) Direct and indirect effects of white-tailed deer in forest ecosystems. For Ecol Manage 181(1):165–176

    Article  Google Scholar 

  • Ruell EW, Riley SPD, Douglas MR, Antolin MF, Pollinger JR, Tracey JA, Lyren LM, Boydston EE, Fisher RN, Crooks KR (2012) Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California. Am Midl Nat 168(2):265–280

    Article  Google Scholar 

  • Sato JJ, Kawakami T, Tasaka Y, Tamenishi M, Yamaguchi Y (2014) A few decades of habitat fragmentation has reduced population genetic diversity: a case study of landscape genetics of the large Japanese field mouse, Apodemus speciosus. Mamm Study 39(1):1–10

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University Illinois Press, Urbana, p 17

    Google Scholar 

  • Spencer W, Beier P, Penrod K, Winters P, Rustigian-Romsos JS, Parisi M and Pettler A (2010) California essential habitat connectivity project: a strategy for conserving a connected California. Prepared for California Department of Transportation, California Department of Fish and Game, and Federal Highways Administration

  • U.S. Geological Survey (2009) National Elevation Dataset (NED)–Raster digital data, U.S. Geological Survey (ed). The National Map, Sioux Falls

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Res 4(3):535–538

    Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  Google Scholar 

  • Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol Ecol 16(5):977–992

    Article  CAS  PubMed  Google Scholar 

  • Vickers TW, Sanchez JN, Johnson CK, Morrison SA, Botta R, Smith T, Cohen BS, Huber PR, Ernest HB, Boyce WM (2015) Survival and mortality of pumas (Puma concolor) in a fragmented, urbanizing landscape. PLoS ONE 10(7):e0131490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Schreiber A (2001) The impact of habitat fragmentation and social structure on the population genetics of roe deer (Capreolus capreolus L.) in Central Europe. Heredity 86(6):703–715

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Do CHI (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8(4):753–756

    Article  Google Scholar 

  • Wilson, MC, Chen, XY, Corlett, RT, Didham, RK, Ding, P, Holt, RD, Holyoak, M, Hu, G, Hughes, AC, Jiang, L and Laurance, WF (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. 219–227

  • Winter DJ (2012) MMOD: an R library for the calculation of population differentiation statistics. Mol Ecol Res 12(6):1158–1160

    Article  CAS  Google Scholar 

  • Yokoyama R, Shirasawa M, Pike RJ (2002) Visualizing topography by openness: a new application of image processing to digital elevation models. Photogramm Eng Remote Sens 68:257–266

    Google Scholar 

Download references

Acknowledgements

Several organizations provided volunteer and staff assistance in collecting samples and accessing lands, including Santa Monica Mountains National Recreation Area National Park Service, Irvine Ranch Conservancy, OC Parks, California State Parks, Orange County Trackers, and Ventura County Wildlife Trackers. We thank M.B. Bourne, C. Shew, and J. Curti for their diligent work in the lab. We thank A. Vandergast and A. Mitelberg for consultation on laboratory protocol and analysis. We thank M. Peters for his excellent computer programming and GIS skills that aided the computation of least-cost paths. We also thank L. Lyren and A. Vandergast for conceptual input, and additionally thank L. Lyren for excellent field work and organization launching this project. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding

This work was supported by Army Corps of Engineers, United States Geological Survey Ecosystems Mission Area, and the UC Catalyst Grant Program (#CA-16-376437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaughn L. Fraser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, D.L., Ironside, K., Wayne, R.K. et al. Connectivity of mule deer (Odocoileus hemionus) populations in a highly fragmented urban landscape. Landscape Ecol 34, 1097–1115 (2019). https://doi.org/10.1007/s10980-019-00824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00824-9

Keywords

Navigation