Advertisement

Landscape Ecology

, Volume 33, Issue 10, pp 1679–1690 | Cite as

Issues and challenges in landscape models for agriculture: from the representation of agroecosystems to the design of management strategies

  • Sylvain Poggi
  • Julien Papaïx
  • Claire Lavigne
  • Frédérique Angevin
  • Florence Le Ber
  • Nicolas Parisey
  • Benoît Ricci
  • Fabrice Vinatier
  • Julie Wohlfahrt
Perspective

Abstract

Context

Agroecosystems produce food and many other services that are crucial for human well-being. Given the scales at which the processes underlying these services take place, agricultural landscapes appear as appropriate spatial units for their evaluation and management. The design of sustainable agricultural landscapes that value these services has thus become a pressing issue but faces major challenges stemming from the diversity of processes, their interactions and the number of scales at stake. Agricultural landscape modelling can provide a key contribution to this design but must still overcome several difficulties to offer reliable tools for decision makers.

Objectives

Our study aimed at shedding light on the main scientific and technical difficulties that make the building of landscape models that may efficiently inform decision-makers a complex task, as well as translating them in terms of challenges that can be further investigated and discussed.

Methods

We examine current issues and challenges and indicate future research needs to overcome the scientific and technical obstacles in the development of useful agricultural landscape models.

Results

We highlight research perspectives to better couple landscape patterns and process models and account for feedbacks, integrate the decisions of multiple stakeholders, consider the spatial and temporal heterogeneity of data and processes, explore alternative landscape organisations and assess multiobjective performance.

Conclusion

Coping with the issues and challenges discussed in this paper should improve our understanding of agroecosystems and give rise to new hypotheses, thereby informing future research.

Keywords

Agroecosystem Sustainability Management strategies Stakeholder decisions Simulation models Spatial heterogeneity Inference 

Notes

Acknowledgements

Support was provided by the PAYOTE scientific network, which is funded by the French National Institute for Agricultural Research (INRA). Authors are grateful to many colleagues for fruitful discussions which contributed to this paper. We thank anonymous reviewers for their helpful comments and suggestions on the manuscript.

References

  1. Bakker MM, Alam SJ, van Dijk J, Rounsevell MDA (2015) Land-use change arising from rural land exchange: an agent-based simulation model. Landscape Ecol 30:273–286CrossRefGoogle Scholar
  2. Beaumont MA (2010) Approximate bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst 41:379–406CrossRefGoogle Scholar
  3. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services: relationships among multiple ecosystem services. Ecol Lett 12:1394–1404CrossRefPubMedGoogle Scholar
  4. Betbeder J, Laslier M, Hubert-Moy L, Burel F, Baudry J (2017) Synthetic aperture radar (SAR) images improve habitat suitability models. Landscape Ecol 32:1867–1879CrossRefGoogle Scholar
  5. Bianchi FJJA, Honĕk A, van der Werf W (2007) Changes in agricultural land use can explain population decline in a ladybeetle species in the Czech Republic: evidence from a process-based spatially explicit model. Landscape Ecol 22:1541–1554CrossRefGoogle Scholar
  6. Bosch OJ, Gibson R, Kellner K, Allen W (1997) Using case-based reasoning methodology to maximise the use of knowledge to solve specific rangeland problems. J Arid Environ 35:549–557CrossRefGoogle Scholar
  7. Bourgeois A, Gaba S, Munier-Jolain N, Borgy B, Monestiez P, Soubeyrand S (2012) Inferring weed spatial distribution from multi-type data. Ecol Model 226:92–98CrossRefGoogle Scholar
  8. Bourhis Y, Poggi S, Mammeri Y, Cortesero A-M, Le Ralec A, Parisey N (2015) Perception-based foraging for competing resources: assessing pest population dynamics at the landscape scale from heterogeneous resource distribution. Ecol Model 312:211–221CrossRefGoogle Scholar
  9. Bourhis Y, Poggi S, Mammeri Y, Le Cointe R, Cortesero A-M, Parisey N (2017) Foraging as the landscape grip for population dynamics—a mechanistic model applied to crop protection. Ecol Model 354:26–36CrossRefGoogle Scholar
  10. Boussard H, Roche B, Joannon A, Martel G (2017) CAPFarm: a software for crop allocation problem at the farm and landscape levels. INRA, RennesGoogle Scholar
  11. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw.  https://doi.org/10.18637/jss.v076.i01 CrossRefGoogle Scholar
  12. Castellazzi MS, Matthews J, Angevin F, Sausse C, Wood GA, Burgess PJ, Brown I, Conrad KF, Perry JN (2010) Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Environ Model Softw 25:1881–1889CrossRefGoogle Scholar
  13. Clark JS (2004) Why environmental scientists are becoming Bayesians: modelling with Bayes. Ecol Lett 8:2–14CrossRefGoogle Scholar
  14. Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535CrossRefGoogle Scholar
  15. Coléno FC (2008) A simulation model to evaluate the consequences of Genetic Modification and non-Genetic Modification segregation rules on landscape organisation. J Int Farm Manag 4:33–45Google Scholar
  16. Cressie N, Calder CA, Clark JS, Hoef JMV, Wikle CK (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl 19:553–570CrossRefPubMedGoogle Scholar
  17. Csilléry K, François O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol 3:475–479CrossRefGoogle Scholar
  18. Cushman SA, Evans JS, McGarigal K (2010) Landscape ecology: past, present, and future. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, pp 65–82CrossRefGoogle Scholar
  19. de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R (2017) Programming with models: writing statistical algorithms for general model structures with NIMBLE. J Comput Graph Stat 26:403–413CrossRefGoogle Scholar
  20. Degenne P, Lo Seen D, Parigot D, Forax R, Tran A, Ait Lahcen A, Curé O, Jeansoulin R (2009) Design of a domain specific language for modelling processes in landscapes. Ecol Model 220:3527–3535CrossRefGoogle Scholar
  21. Dusseux P, Corpetti T, Hubert-Moy L, Corgne S (2014) Combined use of multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens 6:6163–6182CrossRefGoogle Scholar
  22. Etherington TR, Holland EP, O’Sullivan D (2015) NLMpy: a python software package for the creation of neutral landscape models within a general numerical framework. Methods Ecol Evol 6:164–168CrossRefGoogle Scholar
  23. Forman RTT (1995) Some general principles of landscape and regional ecology. Landscape Ecol 10:133–142CrossRefGoogle Scholar
  24. Forman RTT, Godron M (1986) Landscape Ecology. Cambridge University Press, CambridgeGoogle Scholar
  25. Fortin M-J, James PMA, MacKenzie A, Melles SJ, Rayfield B (2012) Spatial statistics, spatial regression, and graph theory in ecology. Spat Stat 1:100–109CrossRefGoogle Scholar
  26. Gaucherel C, Boudon F, Houet T, Castets M, Godin C (2012) Understanding patchy landscape dynamics: towards a landscape language. PLoS ONE 7:e46064CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991CrossRefPubMedGoogle Scholar
  28. Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A (2011) Statistical inference for stochastic simulation models—theory and application: inference for stochastic simulation models. Ecol Lett 14:816–827CrossRefPubMedGoogle Scholar
  29. Houet T, Schaller N, Castets M, Gaucherel C (2014) Improving the simulation of fine-resolution landscape changes by coupling top-down and bottom-up land use and cover changes rules. Int J Geogr Inf Sci 28:1848–1876CrossRefGoogle Scholar
  30. Houet T, Verburg PH, Loveland TR (2010) Monitoring and modelling landscape dynamics. Landscape Ecol 25:163–167CrossRefGoogle Scholar
  31. Illian JB, Martino S, Sørbye SH, Gallego-Fernández JB, Zunzunegui M, Esquivias MP, Travis JMJ (2013) Fitting complex ecological point process models with integrated nested Laplace approximation. Methods Ecol Evol 4:305–315CrossRefGoogle Scholar
  32. Jabot F, Faure T, Dumoulin N (2013) EasyABC: performing efficient approximate Bayesian computation sampling schemes using R. Methods Ecol Evol 4:684–687CrossRefGoogle Scholar
  33. Kehoe L, Romero-Muñoz A, Polaina E, Estes L, Kreft H, Kuemmerle T (2017) Biodiversity at risk under future cropland expansion and intensification. Nat Ecol Evol 1:1129–1135CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kiêu K, Adamczyk-Chauvat K, Monod H, Stoica RS (2013) A completely random T-tessellation model and Gibbsian extensions. Spat Stat 6:118–138CrossRefGoogle Scholar
  35. Lamboni M, Monod H, Makowski D (2011) Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab Eng Syst Saf 96:450–459CrossRefGoogle Scholar
  36. Lausch A, Blaschke T, Haase D, Herzog F, Syrbe R-U, Tischendorf L, Walz U (2015) Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol Model 295:31–41CrossRefGoogle Scholar
  37. Le Ber F, Dolques X, Martin L, Mille A, Benoît M (2017) A reasoning model based on perennial crop allocation cases and rules. In: Aha DW, Lieber J (eds) Case-based reasoning research and development. Springer International Publishing, Cham, pp 61–75CrossRefGoogle Scholar
  38. Le Ber F, Lavigne C, Adamczyk K, Angevin F, Colbach N, Mari JF, Monod H (2009) Neutral modelling of agricultural landscapes by tessellation methods-application for gene flow simulation. Ecol Model 220:3536–3545CrossRefGoogle Scholar
  39. Lepczyk CA, Lortie CJ, Anderson LJ (2008) An ontology for landscapes. Ecol Complex 5:272–279CrossRefGoogle Scholar
  40. Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067CrossRefPubMedGoogle Scholar
  41. Malawska A, Topping CJ (2017) Applying a biocomplexity approach to modelling farmer decision-making and land use impacts on wildlife. J Appl Ecol.  https://doi.org/10.1111/1365-2664.13024 CrossRefGoogle Scholar
  42. Martel G, Aviron S, Joannon A, Lalechère E, Roche B, Boussard H (2017) Impact of farming systems on agricultural landscapes and biodiversity: from plot to farm and landscape scales. Eur J Agron.  https://doi.org/10.1016/j.eja.2017.07.014 CrossRefGoogle Scholar
  43. Martin E, Gascoin S, Grusson Y, Murgue C, Bardeau M, Anctil F, Ferrant S, Lardy R, Le Moigne P, Leenhardt D, Rivalland V, Sánchez Pérez J-M, Sauvage S, Therond O (2016) On the use of hydrological models and satellite data to study the water budget of river basins affected by human activities: examples from the Garonne Basin of France. Surv Geophys 37:223–247CrossRefGoogle Scholar
  44. McIntire EJB, Fajardo A (2009) Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90:46–56CrossRefPubMedGoogle Scholar
  45. Memmah M-M, Lescourret F, Yao X, Lavigne C (2015) Metaheuristics for agricultural land use optimization. A review. Agron Sustain Dev 35:975–998CrossRefGoogle Scholar
  46. Okin GS, las Heras MM, Saco PM, Throop HL, Vivoni ER, Parsons AJ, Wainwright J, Peters DP (2015) Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front Ecol Environ 13:20–27CrossRefGoogle Scholar
  47. Papaïx J, Adamczyk-Chauvat K, Bouvier A, Kiêu K, Touzeau S, Lannou C, Monod H (2014) Pathogen population dynamics in agricultural landscapes: the Ddal modelling framework. Infect Genet Evol 27:509–520CrossRefPubMedGoogle Scholar
  48. Pelosi C, Goulard M, Balent G (2010) The spatial scale mismatch between ecological processes and agricultural management: do difficulties come from underlying theoretical frameworks? Agric Ecosyst Environ 139:455–462CrossRefGoogle Scholar
  49. Plummer M (2003) JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs Sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, AustriaGoogle Scholar
  50. Ricci B, Messéan A, Lelièvre A, Coléno F-C, Angevin F (2016) Improving the management of coexistence between GM and non-GM maize with a spatially explicit model of cross-pollination. Eur J Agron 77:90–100CrossRefGoogle Scholar
  51. Rounsevell MDA, Arneth A (2011) Representing human behaviour and decisional processes in land system models as an integral component of the earth system. Glob Environ Change 21:840–843CrossRefGoogle Scholar
  52. Saint-Geours N, Bailly J-S, Grelot F, Lavergne C (2014) Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies. Environ Model Softw 60:153–166CrossRefGoogle Scholar
  53. Schaller N, Lazrak EG, Martin P, Mari J-F, Aubry C, Benoît M (2012) Combining farmers’ decision rules and landscape stochastic regularities for landscape modelling. Landscape Ecol 27:433–446CrossRefGoogle Scholar
  54. Schirpke U, Leitinger G, Tappeiner U, Tasser E (2012) SPA-LUCC: developing land-use/cover scenarios in mountain landscapes. Ecol Inform 12:68–76CrossRefGoogle Scholar
  55. Sciaini M (2018) Package “NMLR”: Simulating Neutral Landscape Models. R Package Version 030Google Scholar
  56. Soubeyrand S, Roques L (2014) Parameter estimation for reaction-diffusion models of biological invasions. Popul Ecol 56:427–434CrossRefGoogle Scholar
  57. Stratonovitch P, Elias J, Denholm I, Slater R, Semenov MA (2014) An individual-based model of the evolution of pesticide resistance in heterogeneous environments: control of Meligethes aeneus population in oilseed rape crops. PLoS ONE 9:e115631CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thenail C, Joannon A, Capitaine M, Souchère V, Mignolet C, Schermann N, Di Pietro F, Pons Y, Gaucherel C, Viaud V, Baudry J (2009) The contribution of crop-rotation organization in farms to crop-mosaic patterning at local landscape scales. Agric Ecosyst Environ 131:207–219CrossRefGoogle Scholar
  59. Tieskens KF, Shaw BJ, Haer T, Schulp CJE, Verburg PH (2017) Cultural landscapes of the future: using agent-based modeling to discuss and develop the use and management of the cultural landscape of South West Devon. Landscape Ecol 32:2113–2132CrossRefGoogle Scholar
  60. Todeschini A, Caron F, Fuentes M, Legrand P, Del Moral P (2014) Biips: Software for Bayesian Inference with Interacting Particle Systems. arXiv:1412.3779
  61. Topping CJ, Odderskær P, Kahlert J (2013) Modelling Skylarks (Alauda arvensis) to Predict impacts of changes in land management and policy: development and testing of an agent-based model. PLoS ONE 8:e65803CrossRefPubMedPubMedCentralGoogle Scholar
  62. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New YorkGoogle Scholar
  63. Verburg PH, Dearing JA, Dyke JG, van der Leeuw S, Seitzinger S, Steffen W, Syvitski J (2016) Methods and approaches to modelling the Anthropocene. Glob Environ Change 39:328–340CrossRefGoogle Scholar
  64. Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecol 24:1167–1181CrossRefGoogle Scholar
  65. Viaud V, Monod H, Lavigne C, Angevin F, Adamczyk K (2008) Spatial sensitivity of maize gene-flow to landscape pattern: a simulation approach. Landscape Ecol 23:1067–1079CrossRefGoogle Scholar
  66. Villa-Vialaneix N, Follador M, Ratto M, Leip A (2012) A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops. Environ Model Softw 34:51–66CrossRefGoogle Scholar
  67. Vinatier F, Chauvet M (2017) A neutral model for the simulation of linear networks in territories. Ecol Model 363:8–16CrossRefGoogle Scholar
  68. Vinatier F, Gosme M, Valantin-Morison M (2012) A tool for testing integrated pest management strategies on a tritrophic system involving pollen beetle, its parasitoid and oilseed rape at the landscape scale. Landscape Ecol 27:1421–1433CrossRefGoogle Scholar
  69. Vinatier F, Lagacherie P, Voltz M, Petit S, Lavigne C, Brunet Y, Lescourret F (2016) An unified framework to integrate biotic, abiotic processes and human activities in spatially explicit models of agricultural landscapes. Front Environ Sci.  https://doi.org/10.3389/fenvs.2016.00006 CrossRefGoogle Scholar
  70. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L (2010) ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics 11:116CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wiens JA (1989) The ecology of bird communities. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  72. Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol 28:999–1023CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.IGEPP, INRA, AgroCampus OuestLe RheuFrance
  2. 2.BioSP, INRAAvignonFrance
  3. 3.PSH, INRAAvignonFrance
  4. 4.Eco-Innov, INRAThiverval-GrignonFrance
  5. 5.ICube, Université de Strasbourg, CNRS, ENGEESIllkirch-GraffenstadenFrance
  6. 6.Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijonFrance
  7. 7.LISAH, Université Montpellier, INRA, IRD, Montpellier SupAgroMontpellierFrance
  8. 8.SAD ASTER, INRAMirecourtFrance

Personalised recommendations