Landscape Ecology

, Volume 33, Issue 8, pp 1435–1446 | Cite as

Small-scale agricultural landscapes promote spider and ground beetle densities by offering suitable overwintering sites

  • Róbert GalléEmail author
  • Péter Császár
  • Tímea Makra
  • Nikolett Gallé-Szpisjak
  • Zsuzsanna Ladányi
  • Attila Torma
  • Kapilkumar Ingle
  • Péter Szilassi
Research Article



Intensive agricultural management practices and landscape homogenisation are the main drivers of biodiversity loss in agricultural landscapes. Agricultural fields are regularly disturbed and provide unstable habitats due to crop management regimes. This may lead to movement of arthropods into neighbouring non-arable habitats, as natural and semi-natural habitats provide suitable overwintering sites.


Here we assessed the effect of landscape composition and configuration on the overwintering spider and carabid fauna of grassy field margins and hedgerows.


We sampled ground-dwelling arthropods at field edges of different types (grassy field margin and hedgerows), landscape composition (diverse and simple) and configuration (mosaic and large-scale agricultural landscapes).


We detected larger spiders in hedgerows than in grassy field margins and in complex landscapes rather than in simple landscapes. We found a significant effect of interaction between landscape composition and edge type on ballooning propensity of spiders. Agrobiont carabids were more abundant in field edges of compositionally simple and large-scale agricultural landscapes. Furthermore, we showed an effect of interaction between landscape composition and edge type on agrobiont spiders. We collected larger carabids in grassy field margins than in hedgerows and carabids were smaller in simple landscapes than in diverse landscapes. The spider community was affected by edge type, and landscape composition had a significant effect on the carabid community.


Small-scale agricultural landscapes may have higher overall densities of ground-dwelling spiders and carabids than large scale landscapes due to the relatively high edge density and the higher quantity of available overwintering sites.


Grassy field margin Overwintering arthropods Landscape composition Landscape configuration Hedgerow 



This work was supported by the Hungarian National Research, Development and Innovation Office (Grant Id: NKFI-FK-124579).

Supplementary material

10980_2018_677_MOESM1_ESM.tif (1.2 mb)
Supplementary material 1 (TIFF 1182 kb)
10980_2018_677_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 12 kb)


  1. Bartón K (2015) Package MuMIn. R Package version 1.15. 1. R Foundation for Statistical Computing, ViennaGoogle Scholar
  2. Batáry P, Gallé R, Riesch F, Fischer C, Dormann CF, Mußhoff O, Császár P, Fusarol S, Gayer C, Happe AK, Kurucz K, Molnár D, Rösch V, Wietzke A, Tscharntke T (2017) The former iron curtain still drives biodiversity-profit trade-offs in German agriculture. Nat Ecol Evol 1:1279–1284CrossRefPubMedGoogle Scholar
  3. Batáry P, Holzschuh A, Orci KM, Samu F, Tscharntke T (2012) Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agr Ecosyst Environ 146:130–136CrossRefGoogle Scholar
  4. Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manag 60:7–22CrossRefGoogle Scholar
  5. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114CrossRefPubMedGoogle Scholar
  6. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Lond B 273:1715–1727CrossRefGoogle Scholar
  7. Bianchi FJJA, van der Werf W (2003) The effect of the area and configuration of hibernation sites on the control of aphids by Coccinella septempunctata (Coleoptera: Coccinellidae) in agricultural landscapes: a simulation study. Environ Entomol 32:1290–1304CrossRefGoogle Scholar
  8. Birkhofer C, Entling M, Lubin Y (2013) Agroecology trait composition, spatial relationships, trophic interactions. In: Penney D (ed) Spider research in the 21st century: trends & perspectives. Siri Scientific Press, New York, pp 200–229Google Scholar
  9. Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Bull Br Arachnol Soc 14:308–316CrossRefGoogle Scholar
  10. Blitzer EJ, Dormann CF, Holzschuh A, Klein A-M, Rand TA, Tscharntke T (2012) Spillover of functionally important organisms between managed and natural habitats. Agric Ecosyst Environ 146:34–43CrossRefGoogle Scholar
  11. Bonte D, Vandenbroecke N, Lens L, Maelfait JP (2003) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc R Soc Lond B 270:1601–1607CrossRefGoogle Scholar
  12. Buchar J, Ruzicka V (2002) Catalogue of spiders of the Czech Republic. Peres, PragueGoogle Scholar
  13. Buddle CM, Higgins S, Rypstra AL (2004) Ground-dwelling spider assemblages inhabiting riparian forests and hedgerows in an agricultural landscape. Am Midl Nat 151:15–26CrossRefGoogle Scholar
  14. Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin, p 488Google Scholar
  15. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932CrossRefPubMedGoogle Scholar
  16. Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landscape Ecol 23:135–148CrossRefGoogle Scholar
  17. Cordeau S, Petit S, Reboud X, Chauvel B (2012) Sown grass strips harbour high weed diversity but decrease weed richness in adjacent crops. Weed Res 52:88–97CrossRefGoogle Scholar
  18. Drapela T, Moser D, Zaller JG, Frank T (2008) Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31:254–262CrossRefGoogle Scholar
  19. Duflot R, Aviron S, Ernoult A, Fahrig L, Burel F (2015) Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: a case study. Ecol Res 30:75–83CrossRefGoogle Scholar
  20. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–367Google Scholar
  21. Entling W, Schmidt-Entling MH, Bacher S, Brandl R, Nentwig W (2010) Body size-climate relationships of European spiders. J Biogeogr 37:477–485CrossRefGoogle Scholar
  22. Entling MH, Stämpfli K, Ovaskainen O (2011) Increased propensity for aerial dispersal in disturbed habitats due to intraspecific variation and species turnover. Oikos 120:1099–1109CrossRefGoogle Scholar
  23. ESRI (2012) ArcGIS 10.1. ESRI (Environmental Systems Resource Institute), RedlandsGoogle Scholar
  24. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112CrossRefPubMedGoogle Scholar
  25. Ferrante M, González E, Lövei GL (2017) Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina. Ecol Evol 7:7699–7707CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fischer C, Schlinkert H, Ludwig M, Holzschuh A, Gallé R, Tscharntke T, Batáry P (2013) The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. J Insect Conserv 17:1027–1038CrossRefGoogle Scholar
  27. Freude H, Harde KW, Müller-Motzfeld G, Lohse GA, Klausnitzer B (2004) Die Käfer Mitteleuropas, Adephaga 1. Carabidae Laufkäfer. Spektrum akademischer Verlag, Munich, pp 1–521Google Scholar
  28. Geiger F, Wäckers FL, Bianchi FJJA (2009) Hibernation of predatory arthropods in semi-natural habitats. Biocontrol 54:529–535CrossRefGoogle Scholar
  29. González E, Salvo A, Defagó MT, Valladares G (2016) A moveable feast: insects moving at the forest-crop interface are affected by crop phenology and the amount of forest in the landscape. PLoS ONE 11:e0158836CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hendrickx F, Maelfait JP, Desender K, Aviron S, Bailey D, Diekotter T, Lens L, Schweiger O, Speelmans M, Vandomme V, Bugter R (2009) Pervasive effects of dispersal limitation on within-and among-community species richness in agricultural landscapes. Glob Ecol Biogeogr 18:607–616CrossRefGoogle Scholar
  31. Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351CrossRefGoogle Scholar
  32. Holland JM, Bianchi FJJA, Entling MH, Moonen A-C, Smith BM, Jeanneret P (2016) Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Manag Sci 72:1638–1651CrossRefPubMedGoogle Scholar
  33. Holland JM, Birkett T, Southway S (2009) Contrasting the farm-scale spatiotemporal dynamics of boundary and field overwintering predatory beetles in arable crops. Biocontrol 54:19–33CrossRefGoogle Scholar
  34. Homburg K, Homburg N, Schaefer F, Schuldt A, Assmann T (2014) dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv Divers 7:195–205CrossRefGoogle Scholar
  35. Hurka K (1996) Carabidae of the Czech and Slovak Republics. Kabourek, Zlin, pp 1–565Google Scholar
  36. Kalushkov P, Blagoev G, Deltshev C (2008) Biodiversity of epigeic spiders in genetically modified (Bt) and conventional (non-Bt) potato fields in Bulgaria. Acta Zool Bulg 60:61–69Google Scholar
  37. Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package ‘lmerTest’. R package version, 2-0. R Foundation for Statistical Computing, ViennaGoogle Scholar
  38. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann Rev Entomol 45:175–201CrossRefGoogle Scholar
  39. Lang S, Tiede D (2003) vLATE Extension für ArcGIS—vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse, ESRI Anwenderkonferenz 2003 Innsbruck. CDROMGoogle Scholar
  40. Le Viol I, Julliard R, Kerbiriou C, de Redon L, Carnino N, Machon N, Porcher E (2008) Plant and spider communities benefit differently from the presence of planted hedgerows in highway verges. Biol Conserv 101:1581–1590CrossRefGoogle Scholar
  41. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefPubMedGoogle Scholar
  42. Lóczy D (ed) (2015) Landscapes and landforms of Hungary. Springer, Leverkusen, pp 1–294Google Scholar
  43. Madeira F, Tscharntke T, Elek Z, Kormann UG, Pons X, Rösch V, Samu F, Scherber C, Batáry P (2016) Spillover of arthropods from cropland to protected calcareous grassland–the neighbouring habitat matters. Agric Ecosyst Environ 235:127–133CrossRefGoogle Scholar
  44. Makra L, Matyasovszky I, Páldy A, Deák ÁJ (2012) The influence of extreme high and low temperatures and precipitation totals on pollen seasons of Ambrosia, Poaceae and Populus in Szeged, southern Hungary. Grana 51:215–227CrossRefGoogle Scholar
  45. Mansion-Vaquié A, Ferrante M, Cook SM, Pell JK, Lövei GL (2017) Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum aestivum). J Appl Entomol 141:600–611CrossRefGoogle Scholar
  46. Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21CrossRefGoogle Scholar
  47. Marshall EJP, West TM, Kleijn D (2006) Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric Ecosyst Environ 113:36–44CrossRefGoogle Scholar
  48. Martin TJ, Major RE (2001) Changes in wolf spider (Araneae) assemblages across woodland-pasture boundaries in the central wheat-belt of New South Wales, Australia. Austral Ecol 26:264–274CrossRefGoogle Scholar
  49. Moretti M, Dias AT, Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Öckinger E, Sousa JP, Ellers J, Matty PB (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567CrossRefGoogle Scholar
  50. Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2017) Spiders of Europe. Accessed 09 Oct 2017
  51. Noordijk J, Raemakers IP, Schaffers AP, Sykora KV (2009) Arthropod richness in roadside verges in the Netherlands. Terr Arthropod Rev 2:63–76CrossRefGoogle Scholar
  52. Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agric Ecosyst Environ 95:579–612CrossRefGoogle Scholar
  53. Öberg S, Ekbom B, Bommarco R (2007) Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agric Ecosyst Environ 122:211–219CrossRefGoogle Scholar
  54. Opatovsky I, Lubin Y (2012) Coping with abrupt decline in habitat quality: effects of harvest on spider abundance and movement. Acta Oecol 41:14–19CrossRefGoogle Scholar
  55. Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222CrossRefGoogle Scholar
  56. Pluess T, Opatovsky I, Gavish-Regev E, Lubin Y, Schmidt-Entling MH (2010) Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. Agric Ecosyst Environ 137:68–74CrossRefGoogle Scholar
  57. Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005) Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174CrossRefGoogle Scholar
  58. Ramsden MW, Menéndez R, Leather SR, Wäckers F (2015) Optimizing field margins for biocontrol services: the relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. Agric Ecosys Environ 199:94–104CrossRefGoogle Scholar
  59. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614CrossRefPubMedGoogle Scholar
  60. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188CrossRefPubMedGoogle Scholar
  61. Roberts DW (2012) Package ‘‘labdsv.’’ Accessed 23 Aug 2017
  62. Rundlöf M, Nilsson H, Smith HG (2008) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141:417–426CrossRefGoogle Scholar
  63. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, HuberSanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  64. Samu F, Cs Szinetár (2002) On the nature of agrobiont spiders. J Arachnol 30:389–402CrossRefGoogle Scholar
  65. Sarthou JP, Badoz A, Vaissière B, Chevallier A, Rusch A (2014) Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agric Ecosyst Environ 194:17–28CrossRefGoogle Scholar
  66. Schaffers AP, Raemakers IP, Sýkora KV (2012) Successful overwintering of arthropods in roadside verges. J Insect Conserv 16:511–522CrossRefGoogle Scholar
  67. Schellhorn NA, Bianchi FJJA, Hsu CL (2014) Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu Rev Entomol 59:559–581CrossRefPubMedGoogle Scholar
  68. Schirmel J, Blindow I, Buchholz S (2012) Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic Appl Ecol 13:606–614CrossRefGoogle Scholar
  69. Schirmel J, Thiele J, Entling MH, Buchholz S (2016) Trait composition and functional diversity of spiders and carabids in linear landscape elements. Agric Ecosyst Environ 235:318–328CrossRefGoogle Scholar
  70. Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166Google Scholar
  71. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365CrossRefGoogle Scholar
  72. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594CrossRefPubMedGoogle Scholar
  73. Szilassi P, Bata T, Szabó S, Czúcz B, Molnár Z (2017) The link between landscape pattern and vegetation naturalness on a regional scale. Ecol Indic 81:252–259CrossRefGoogle Scholar
  74. Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41:526–538CrossRefGoogle Scholar
  75. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685CrossRefPubMedGoogle Scholar
  76. Turner MG, Gardner MH (2015) Landscape ecology in theory and practice pattern and process. Springer, New York, pp 1–482Google Scholar
  77. Wamser S, Dauber J, Birkhofer K, Wolters V (2011) Delayed colonisation of arable fields by spring breeding ground beetles (Coleoptera: Carabidae) in landscapes with a high availability of hibernation sites. Agric Ecosyst Environ 144:235–240CrossRefGoogle Scholar
  78. Way JM (1977) Roadside verges and conservation in Britain: a review. Biol Conserv 12:65–74CrossRefGoogle Scholar
  79. Werling BP, Gratton C (2008) Influence of field margins and landscape context on ground beetle diversity in Wisconsin (USA) potato fields. Agric Ecosyst Environ 128:104–108CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Róbert Gallé
    • 1
    Email author
  • Péter Császár
    • 1
  • Tímea Makra
    • 2
  • Nikolett Gallé-Szpisjak
    • 1
  • Zsuzsanna Ladányi
    • 2
  • Attila Torma
    • 1
  • Kapilkumar Ingle
    • 1
  • Péter Szilassi
    • 2
  1. 1.Department of EcologyUniversity of SzegedSzegedHungary
  2. 2.Department of Physical Geography and GeoinformaticsUniversity of SzegedSzegedHungary

Personalised recommendations