Landscape Ecology

, Volume 33, Issue 6, pp 937–954 | Cite as

Temporal shifts in landscape connectivity for an ecosystem engineer, the roe deer, across a multiple-use landscape

  • Jodie Martin
  • Gwenaël Vourc’h
  • Nadège Bonnot
  • Bruno Cargnelutti
  • Yannick Chaval
  • Bruno Lourtet
  • Michel Goulard
  • Thierry Hoch
  • Olivier Plantard
  • A. J. Mark Hewison
  • Nicolas Morellet
Research Article



Routine movements of large herbivores, often considered as ecosystem engineers, impact key ecological processes. Functional landscape connectivity for such species influences the spatial distribution of associated ecological services and disservices.


We studied how spatio-temporal variation in the risk-resource trade-off, generated by fluctuations in human activities and environmental conditions, influences the routine movements of roe deer across a heterogeneous landscape, generating shifts in functional connectivity at daily and seasonal time scales.


We used GPS locations of 172 adult roe deer and step selection functions to infer landscape connectivity. In particular, we assessed the influence of six habitat features on fine scale movements across four biological seasons and three daily periods, based on variations in the risk-resource trade-off.


The influence of habitat features on roe deer movements was strongly dependent on proximity to refuge habitat, i.e. woodlands. Roe deer confined their movements to safe habitats during daytime and during the hunting season, when human activity is high. However, they exploited exposed open habitats more freely during night-time. Consequently, we observed marked temporal shifts in landscape connectivity, which was highest at night in summer and lowest during daytime in autumn. In particular, the onset of the autumn hunting season induced an abrupt decrease in landscape connectivity.


Human disturbance had a strong impact on roe deer movements, generating pronounced spatio-temporal variation in landscape connectivity. However, high connectivity at night across all seasons implies that Europe’s most abundant and widespread large herbivore potentially plays a key role in transporting ticks, seeds and nutrients among habitats.


Capreolus capreolus Fragmentation Habitat selection Step selection functions Human activity Human infrastructures 



We thank the local hunting associations, the Fédération Départementale des Chasseurs de la Haute-Garonne for allowing us to work in the Comminges, as well as all coworkers and volunteers for help collecting data. We thank two anonymous referees for constructive comments on a previous version of the manuscript. This work was performed using the facilities of the CC LBBE/PRABI and was supported by the “EUROENET” ANR grant ANR-14-CE02-0017-01 and the “OSCAR” ANR grant ANR-11 AGRO 001 05.

Supplementary material

10980_2018_641_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1496 kb)


  1. Abbas F, Merlet J, Morellet N, Verheyden H, Hewison AJM, Cargnelutti B, Angibault JM, Picot D, Rames JL, Lourtet B (2012) Roe deer may markedly alter forest nitrogen and phosphorus budgets across Europe. Oikos 121:1271–1278CrossRefGoogle Scholar
  2. Adrados C, Girard I, Gendner J-P, Janeau G (2002) Global positioning system (GPS) location accuracy improvement due to selective availability removal. C R Biol 325:165–170CrossRefPubMedGoogle Scholar
  3. Albert A, Auffret AG, Cosyns E, Cousins SAO, D'hondt B, Eichberg C, Eycott, AE, Heinken T, Hoffmann M, Jaroszewicz B (2015) Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos 124:1109–1120CrossRefGoogle Scholar
  4. Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on lyme disease risk. Conserv Biol 17:267–272CrossRefGoogle Scholar
  5. Allan BF, Tallis H, Chaplin-Kramer R, Huckett S, Kowal VA, Musengezi J, Okanga S, Ostfeld RS, Schieltz J, Warui CM (2017) Can integrating wildlife and livestock enhance ecosystem services in central Kenya? Front Ecol Environ 15:328–335CrossRefGoogle Scholar
  6. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22:1117–1129CrossRefGoogle Scholar
  7. Basille M (2015) hab: Habitat and movement functions. URL
  8. Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995CrossRefGoogle Scholar
  9. Benhaiem S, Delon M, Lourtet B, Cargnelutti B, Aulagnier S, Hewison AJM, Morellet N, Verheyden H (2008) Hunting increases vigilance levels in roe deer and modifies feeding site selection. Anim Behav 76:611–618CrossRefGoogle Scholar
  10. Benhamou S, Cornélis D (2010) Incorporating movement behavior and barriers to improve kernel home range space use estimates. J Wildl Manag 74:1353–1360CrossRefGoogle Scholar
  11. Bjorneraas K, Solberg EJ, Herfindal I, Van Moorter B, Rolandsen CM, Tremblay JP, Skarpe C, Saether BE, Eriksen R, Astrup R (2011) Moose Alces alces habitat use at multiple temporal scales in a human-altered landscape. Wildl Biol 17:44–54CrossRefGoogle Scholar
  12. Bjørneraas K, Van Moorter B, Rolandsen CM, Herfindal I (2010) Screening global positioning system location data for errors using animal movement characteristics. J Wildl Manag 74:1361–1366CrossRefGoogle Scholar
  13. Bonnot NC, Morellet N, Verheyden H, Cargnelutti B, Lourtet B, Klein F, Hewison AJM (2013) Habitat use under predation risk: hunting, roads and human dwellings influence the spatial behaviour of roe deer. Eur J Wildl Res 59:185–193CrossRefGoogle Scholar
  14. Bonnot NC, Hewison AJM, Morellet N, Gaillard J-M, Debeffe L, Couriot O, Cargnelutti B, Chaval Y, Lourtet B, Kjellander P (2017) Stick or twist: roe deer adjust their flight behaviour to the perceived trade-off between risk and reward. Anim Behav 124:35–46CrossRefGoogle Scholar
  15. Brown JS, Laundré JW, Gurung M (1999) The ecology of fear: optimal foraging, game theory, and trophic interactions. J Mammal 80:385–399CrossRefGoogle Scholar
  16. Brownstein JS, Skelly DK, Holford TR, Fish D (2005) Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146:469–475CrossRefPubMedGoogle Scholar
  17. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  18. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  19. Cargnelutti B, Coulon A, Hewison AJM, Goulard M, Angibault J-M, Morellet N (2007) Testing global positioning system performance for wildlife monitoring using mobile collars and known reference points. J Wildl Manag 71:1380–1387CrossRefGoogle Scholar
  20. Cat J, Beugnet F, Hoch T, Jongejan F, Prangé A, Chalvet-Monfray K (2017) Influence of the spatial heterogeneity in tick abundance in the modeling of the seasonal activity of Ixodes ricinus nymphs in Western Europe. Exp Appl Acarol 71:115–130CrossRefPubMedGoogle Scholar
  21. Cederlund G (1989) Activity patterns in moose and roe deer in a north boreal forest. Ecography 12:39–45CrossRefGoogle Scholar
  22. Chastagner A, Pion A, Verheyden H, Lourtet B, Cargnelutti B, Picot D, Poux V, Bard E, Plantard O, McCoy KD (2017) Host specificity, pathogen exposure, and superinfections impact the distribution of Anaplasma phagocytophilum genotypes in ticks, roe deer, and livestock in a fragmented agricultural landscape. Infect Genet Evol 55:31–44CrossRefPubMedGoogle Scholar
  23. Ciuti S, Northrup JM, Muhly TB, Simi S, Musiani M, Pitt JA, Boyce MS (2012) Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of Fear. PLoS ONE 7:e50611CrossRefPubMedPubMedCentralGoogle Scholar
  24. Conner LM, Smith MD, Burger L (2003) A comparison of distance-based and classification-based analyses of habitat use. Ecology 84:526–531CrossRefGoogle Scholar
  25. Conway J, Eddelbuettel D, Nishiyama T, Kumar Prayaga S, Tiffin N (2017) RPostgreSQL: R interface to the “PostgreSQL” database system [Internet]. Available from:
  26. Côté SD, Rooney TP, Tremblay J-P, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147CrossRefGoogle Scholar
  27. Coulon A, Cosson J, Angibault J, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach. Mol Ecol 13:2841–2850CrossRefPubMedGoogle Scholar
  28. Coulon A, Morellet N, Goulard M, Cargnelutti B, Angibault J-M, Hewison AJM (2008) Inferring the effects of landscape structure on roe deer (Capreolus capreolus) movements using a step selection function. Landscape Ecol 23:603–614CrossRefGoogle Scholar
  29. Debeffe L, Morellet N, Cargnelutti B, Lourtet B, Bon R, Gaillard J-M, Hewison AJM (2012) Condition-dependent natal dispersal in a large herbivore: heavier animals show a greater propensity to disperse and travel further. J Anim Ecol 81:1327CrossRefPubMedGoogle Scholar
  30. Earl JE, Zollner PA (2017) Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modeling. J Anim Ecol 86:987–997CrossRefPubMedGoogle Scholar
  31. Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606Google Scholar
  32. Fortin D, Beyer HL, Boyce MS, Smith MS, Duchesne T, Mao JS (2005) Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86:1320–1330CrossRefGoogle Scholar
  33. Fortin D, Fortin M-E, Beyer HL, Duchesne TCourant S, Dancose K (2009) Group-size-mediated habitat selection and group fusion–fission dynamics of bison under predation risk. Ecology 90:2480–2490CrossRefPubMedGoogle Scholar
  34. Frid A, Dill LM (2002) Human-caused disturbance stimuli as a form of predation risk. Conserv Ecol 6:11CrossRefGoogle Scholar
  35. Fryxell JM, Hazell M, Börger L, Dalziel BD, Haydon DT, Morales JM, McIntosh T, Rosatte RC (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci 105:19114–19119CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gill RMA, Beardall V (2001) The impact of deer on woodlands: the effects of browsing and seed dispersal on vegetation structure and composition. Forestry 74:209–218CrossRefGoogle Scholar
  37. Grignolio S, Merli E, Bongi P, Ciuti S, Apollonio M (2011) Effects of hunting with hounds on a non-target species living on the edge of a protected area. Biol Conserv 144:641–649CrossRefGoogle Scholar
  38. Hewison AM, Angibault J-M, Cargnelutti B, Coulon A, Rames J-L, Serrano E, Verheyden H, Morellet N (2007) Using radio-tracking and direct observation to estimate roe deer Capreolus capreolus density in a fragmented landscape: a pilot study. Wildl Biol 13:313–320CrossRefGoogle Scholar
  39. Hewison A, Morellet N, Verheyden H, Daufresne T, Angibault J-M, Cargnelutti B, Merlet J, Picot D, Rames J-L, Joachim J (2009) Landscape fragmentation influences winter body mass of roe deer. Ecography 32:1062–1070CrossRefGoogle Scholar
  40. Hobbs NT (1996) Modification of ecosystems by ungulates. J Wildl Manag 60:695–713CrossRefGoogle Scholar
  41. Jeltsch F, Bonte D, Pe’er G, Reineking B, Leimgruber P, Balkenhol N, Schröder B, Buchmann CM, Mueller T, Blaum N, Zurell D, Böhning-Gaese K, Wiegand T, Eccard JA, Hofer H, Reeg J, Eggers U, Bauer S (2013) Integrating movement ecology with biodiversity research-exploring new avenues to address spatiotemporal biodiversity dynamics. Mov Ecol 1:6CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957CrossRefGoogle Scholar
  43. Kiffner C, Lödige C, Alings M, Vor T, Rühe F (2010) Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus). Exp Appl Acarol 52:73–84CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kilpatrick AM, Dobson AD, Levi T, Salkeld DJ, Swei A, Ginsberg HS, Kjemtrup A, Padgett KA, Jensen PM, Fish D (2017) Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Phil Trans R Soc B 372:20160117CrossRefPubMedGoogle Scholar
  45. Laundré JW, Hernández L, Ripple WJ (2010) The landscape of fear: ecological implications of being afraid. Open Ecol J 3:1–7CrossRefGoogle Scholar
  46. Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11:131–135CrossRefPubMedGoogle Scholar
  47. Linnell J, Duncan P, Andersen R (1998) The European roe deer: a portrait of a successful species. In: The European roe deer: the biology of success. Scand Univ Press Oslo, pp. 11–22Google Scholar
  48. Lone K, Loe LE, Meisingset EL, Stamnes I, Mysterud A (2015) An adaptive behavioural response to hunting: surviving male red deer shift habitat at the onset of the hunting season. Anim Behav 102:127–138CrossRefGoogle Scholar
  49. Martin J, Benhamou S, Yoganand K, Owen-Smith N (2015) Coping with spatial heterogeneity and temporal variability in resources and risks: adaptive movement behaviour by a large grazing herbivore. PLoS ONE 10:e0118461CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mitchell MGE, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908CrossRefGoogle Scholar
  51. Morellet N, Van Moorter B, Cargnelutti B, Angibault J-M, Lourtet B, Merlet J, Ladet S, Hewison AJM (2011) Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landscape Ecol 26:999–1010CrossRefGoogle Scholar
  52. Mysterud A, Easterday WR, Stigum VM, Aas AB, Meisingset EL, Viljugrein H (2016) Contrasting emergence of Lyme disease across ecosystems. Nat Commun 7:11882CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105:19052–19059CrossRefPubMedPubMedCentralGoogle Scholar
  54. Owen-Smith N, Fryxell J, Merrill E (2010) Foraging theory upscaled: the behavioural ecology of herbivore movement. Philos Trans R Soc Lond B 365:2267–2278CrossRefGoogle Scholar
  55. Owen-Smith N, Goodall V, Fatti P (2012) Applying mixture models to derive activity states of large herbivores from movement rates obtained using GPS telemetry. Wildl Res 39:452–462Google Scholar
  56. Padié S, Morellet N, Hewison AJM, Martin J-L, Bonnot N, Cargnelutti B, Chamaillé-Jammes S (2015) Roe deer at risk: teasing apart habitat selection and landscape constraints in risk exposure at multiple scales. Oikos 124:1536–1546CrossRefGoogle Scholar
  57. Pakeman R (2001) Plant migration rates and seed dispersal mechanisms. J Biogeogr 28:795–800CrossRefGoogle Scholar
  58. Palmer M, Fieberg J, Swanson A, Kosmala M, Packer C (2017) A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol Lett 20:1364–1373CrossRefPubMedGoogle Scholar
  59. Panzacchi M, Van Moorter B, Strand O, Saerens M, Kivimäki I, St. Clair CC, Herfindal I, Boitani L (2016) Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths. J Anim Ecol 85:32–42CrossRefPubMedGoogle Scholar
  60. Perret J-L, Guerin PM, Diehl PA, Vlimant M, Gern L (2003) Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. J Exp Biol 206:1809–1815CrossRefPubMedGoogle Scholar
  61. Picard M, Papaïx J, Gosselin F, Picot D, Bideau E, Baltzinger C (2015) Temporal dynamics of seed excretion by wild ungulates: implications for plant dispersal. Ecol Evol 5:2621–2632CrossRefPubMedPubMedCentralGoogle Scholar
  62. Prokopenko CM, Boyce MS, Avgar T (2017) Extent-dependent habitat selection in a migratory large herbivore: road avoidance across scales. Landscape Ecol 32:313–325CrossRefGoogle Scholar
  63. Qviller L, Grøva L, Viljugrein H, Klingen I, Mysterud A (2014) Temporal pattern of questing tick Ixodes ricinus density at differing elevations in the coastal region of western Norway. Parasit Vectors 7:179CrossRefPubMedPubMedCentralGoogle Scholar
  64. Qviller L, Viljugrein H, Loe LE, Meisingset EL, Mysterud A (2016) The influence of red deer space use on the distribution of Ixodes ricinus ticks in the landscape. Parasit Vectors 9:545CrossRefPubMedPubMedCentralGoogle Scholar
  65. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2015.
  66. Ruiz-Fons F, Gilbert L (2010) The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats. Int J Parasitol 40:1013–1020CrossRefPubMedGoogle Scholar
  67. Seagle SW (2003) Can ungulates foraging in a multiple-use landscape alter forest nitrogen budgets? Oikos 103:230–234CrossRefGoogle Scholar
  68. Sempéré A, Mauget R, Mauget C (1998) Reproductive physiology of roe deer. In: Andersen R, Duncan P, Linnell JDC (eds) The European roe deer: the biology of success. Scandinavian University Press, Oslo, pp 161–188Google Scholar
  69. Signer J, Fieberg J, Avgar T (2017) Estimating utilization distributions from fitted step-selection functions. Ecosphere 8:e01771CrossRefGoogle Scholar
  70. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573CrossRefGoogle Scholar
  71. Therneau TM, Lumley T (2017) survival: Survival Analyses. R-package version 2.41-3. Available from:
  72. Thurfjell H, Ciuti S, Boyce MS (2014) Applications of step-selection functions in ecology and conservation. Mov Ecol 2:1–12CrossRefGoogle Scholar
  73. Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30CrossRefGoogle Scholar
  74. Van Beest FM, Mysterud A, Loe LE, Milner JM (2010) Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore. J Anim Ecol 79:910–922PubMedGoogle Scholar
  75. Vourc’h G, Abrial D, Bord S, Jacquot M, Masseglia S, Poux V, Pisanu B, Bailly X, Chapuis J-L (2016) Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France. Ticks Tick-Borne Dis 7:644–652CrossRefPubMedGoogle Scholar
  76. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jodie Martin
    • 1
    • 2
  • Gwenaël Vourc’h
    • 3
  • Nadège Bonnot
    • 4
  • Bruno Cargnelutti
    • 1
  • Yannick Chaval
    • 1
  • Bruno Lourtet
    • 1
  • Michel Goulard
    • 5
  • Thierry Hoch
    • 6
  • Olivier Plantard
    • 6
  • A. J. Mark Hewison
    • 1
  • Nicolas Morellet
    • 1
  1. 1.CEFS, Université de Toulouse, INRACastanet-TolosanFrance
  2. 2.Centre for African Ecology School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.UMR EPIA, INRA, VetAgro SupSt Genès ChampanelleFrance
  4. 4.Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
  5. 5.DYNAFOR, Université de Toulouse, INRACastanet-TolosanFrance
  6. 6.BioEpAR, INRA, Oniris, Université Bretagne LoireNantesFrance

Personalised recommendations