Landscape Ecology

, Volume 33, Issue 2, pp 241–255 | Cite as

Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation

  • Chevonne ReynoldsEmail author
  • Robert J. FletcherJr.
  • Celine M. Carneiro
  • Nicole Jennings
  • Alison Ke
  • Michael C. LaScaleia
  • Mbhekeni B. Lukhele
  • Mnqobi L. Mamba
  • Muzi D. Sibiya
  • James D. Austin
  • Cebisile N. Magagula
  • Themba’alilahlwa Mahlaba
  • Ara Monadjem
  • Samantha M. Wisely
  • Robert A. McCleery
Research Article



The landscape heterogeneity hypothesis states that increased heterogeneity in agricultural landscapes will promote biodiversity. However, this hypothesis does not detail which components of landscape heterogeneity (compositional or configurational) most affect biodiversity and how these compare to the effects of surrounding agricultural land-use.


Our objectives were to: (1) assess the influence of the components of structural landscape heterogeneity on taxonomic diversity; and (2) compare the effects of landscape heterogeneity to those of different types of agricultural land-use in the same landscape across different taxonomic groups.


We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an agricultural mosaic of north-eastern Swaziland. We tested how bird, dung beetle, ant and meso-carnivore richness and diversity responded to compositional and configurational heterogeneity and agricultural land-use across five different spatial scales.


Compositional heterogeneity best explained species richness in each taxonomic group. Bird and ant richness were both positively correlated with compositional heterogeneity, whilst dung beetle richness was negatively correlated. Commercial agriculture positively influenced bird species richness and ant diversity, but had a negative influence on dung beetle richness. There was no effect of either component of heterogeneity on the combined taxonomic diversity or richness at any spatial scale.


Our results suggest that increasing landscape compositional heterogeneity and limiting the negative effects of intensive commercial agriculture will foster diversity across a greater number of taxonomic groups in agricultural mosaics. This will require the implementation of different strategies across landscapes to balance the contrasting influences of compositional heterogeneity and land-use. Strategies that couple large patches of core habitat across broader scales with landscape structural heterogeneity at finer scales could best benefit biodiversity.


Landscape heterogeneity Composition Configuration Land-use Biodiversity Agriculture Africa Scale Conservation 



We are grateful to all the field assistants who helped with the collection of the data and to the land owners who granted permission to work on their properties. We also acknowledge considerable support from All Out Africa and the Savanna Research Centre. This research was funded by an NSF ISE Grant (No. 1459882) and the College of Agriculture and Life Science at the University of Florida.

Supplementary material

10980_2017_595_MOESM1_ESM.docx (683 kb)
Descriptions of landscape metrics. Table S1: Correlations between landscape metrics from land-cover datasets. Table S2: Correlations between landscape metrics. Table S3: Model selection results for each taxon. Table S4: Model selection results for all taxa combined. Table S5: Correlation between landscape diversity and the amount of different land covers. Figure S1: Comparison between land-cover datasets. Figure S2: Correlation plot of heterogeneity components. Figure S3: Species accumulation curves. Figure S4: Graphical model selection. Supplementary material 1 (DOCX 682 kb)


  1. Archibald S, Bond WJ, Stock WD, Fairbanks DHK (2005) Shaping the landscape: fire-grazer interactions in an African savanna. Ecol Appl 15:96–109CrossRefGoogle Scholar
  2. Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R, Jacobson J, Colgan MS, Martin RE (2009) Large-scale impacts of herbivores on the structural diversity of African savannas. Proc Natl Acad Sci USA 106:4947–4952CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bailey KM, McCleery RA, Binford MW, Zweig C (2016) Land-cover change within and around protected areas in a biodiversity hotspot. J Land Use Sci 11:154–176CrossRefGoogle Scholar
  4. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  5. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  6. Brown GR, Matthews IM (2016) A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol Evol 6:3953–3964CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New YorkGoogle Scholar
  8. Cerdà A, Jurgensen M, Bodi M (2009) Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia (Bratisl) 64:527–531CrossRefGoogle Scholar
  9. Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318CrossRefGoogle Scholar
  10. Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: Strength, universality, and consistency. Ecol Indic 8:691–703CrossRefGoogle Scholar
  11. DeVault TL, Olson ZH, Beasley JC, Rhodes OE (2011) Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl Ecol 12:268–274CrossRefGoogle Scholar
  12. Du Toit JT, Cumming DHM (1999) Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodivers Conserv 8:1643–1661CrossRefGoogle Scholar
  13. Duelli P (1997) Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agric Ecosyst Environ 62:81–91CrossRefGoogle Scholar
  14. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175CrossRefGoogle Scholar
  15. Ekroos J, Ödman AM, Andersson GKS, Birkhofer K, Herbertsson L, Klatt BK, Olsson O, Olsson PA, Persson AS, Prentice HC, Rundlöf M, Smith HG (2016) Sparing land for biodiversity at multiple spatial scales. Front Ecol Evol 3:1–11CrossRefGoogle Scholar
  16. Esterhuizen D (2015) The supply and demand of sugar in Swaziland. United states department of agriculture foriegn agricultural service GAIN reportGoogle Scholar
  17. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  18. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112CrossRefPubMedGoogle Scholar
  19. Ferguson JWH, Nel JAJ, de Wet MJ (1983) Social organization and movement patterns of Black-backed jackals Canis mesomelas in South Africa. J Zool 199:487–502CrossRefGoogle Scholar
  20. Fortin M-J, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos 102:203–212CrossRefGoogle Scholar
  21. Fuller RJ, Hinsley SA, Swetnam RD (2004) The relevance of non-farmland habitats, uncropped areas and habitat diversity to the conservation of farmland birds. Ibis (Lond 1859) 146:22–31CrossRefGoogle Scholar
  22. Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, De Jong H, Simons NK, Klein AM, Krauss J, Maier G, Scherber C (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random Forests for land cover classification. Pattern Recognit Lett 27:294–300CrossRefGoogle Scholar
  24. Goldblatt R, You W, Hanson G, Khandelwal A (2016) detecting the boundaries of urban areas in india: a dataset for pixel-based image classification in Google Earth Engine. Remote Sens 8:634CrossRefGoogle Scholar
  25. Google Earth Engine Team (2015) Google Earth Engine: a planetary-scale geospatial analysis platformGoogle Scholar
  26. Goudie AS, Price Williams D (1983) The Atlas of Swaziland. Swaziland National Trust Commission, MbabaneGoogle Scholar
  27. Griffith JA, Martinko EA, Price KP (2000) Landscape structure analysis of Kansas at three scales. Landsc Urban Plan 52:45–61CrossRefGoogle Scholar
  28. Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156CrossRefGoogle Scholar
  29. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  30. Hockey P, Dean W, Ryan P (2005) Roberts birds of Southern Africa. John Voelcker Bird Book Fund, Cape TownGoogle Scholar
  31. Holling C (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23CrossRefGoogle Scholar
  32. Hurst ZM, McCleery RA, Collier BA, Fletcher RJ Jr, Silvy NJ, Taylor PJ, Monadjem A (2013) Dynamic edge effects in small mammal communities across a cconservation-agricultural interface in Swaziland. PLoS One 8:e74520CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hurst ZM, McCleery RA, Collier BA, Silvy NJ, Taylor PJ, Monadjem A (2014) Linking changes in small mammal communities to ecosystem functions in an agricultural landscape. Mamm Biol-Zeitschrift für Säugetierkd 79:17–23CrossRefGoogle Scholar
  34. Jacobson A, Dhanota J, Godfrey J, Jacobson H, Rossman Z, Stanish A, Walker H, Riggio J (2015) A novel approach to mapping land conversion using Google Earth with an application to East Africa. Environ Model Softw 72:1–9CrossRefGoogle Scholar
  35. Jun C, Ban Y, Li S (2014) China: open access to Earth land-cover map. Nature 514:434CrossRefPubMedGoogle Scholar
  36. Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci 109:6868–6872CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kleijn D, Rundlöf M, Scheper J, Smith HG, Tscharntke T (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481CrossRefPubMedGoogle Scholar
  38. Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260CrossRefGoogle Scholar
  39. Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73:280–284CrossRefGoogle Scholar
  40. Maciejewski K, Cumming GS (2016) Multi-scale network analysis shows scale-dependency of significance of individual protected areas for connectivity. Landsc Ecol 31:761–774CrossRefGoogle Scholar
  41. Malanson GP, Cramer BE (1999) Landscape heterogeneity, connectivity, and critical landscapes for conservation. Divers Distrib 5:27–39CrossRefGoogle Scholar
  42. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, AmherstGoogle Scholar
  43. Monadjem A, Boycott RC, Parker V, Culverwell J (2003) Threatened vertebrates of Swaziland. In: Swaziland red data book: fishes, amphibians, reptiles, birds and mammals. Ministry of Tourism, Environment and Communications, MbabaneGoogle Scholar
  44. Ness JH, Bronstein JL, Andersen AN, Holland JN (2004) Ant body size predicts dispersal distance of ant-adapted seeds: implications of small-ant invasions. Ecology 85:1244–1250CrossRefGoogle Scholar
  45. Nichols E, Gardner TA, Peres CA, Spector S (2009) Co-declining mammals and dung beetles: an impending ecological cascade. Oikos 118:481–487CrossRefGoogle Scholar
  46. Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME, Network TS (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474CrossRefGoogle Scholar
  47. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2016) Vegan: community ecology package. R package V2.4-4Google Scholar
  48. Pasher J, Mitchell SW, King DJ, Fahrig L, Smith AC, Lindsay KE (2013) Optimizing landscape selection for estimating relative effects of landscape variables on ecological responses. Landsc Ecol 28:371–383CrossRefGoogle Scholar
  49. Perera SJ, Ratnayake-Perera D, Procheş Ş (2011) Vertebrate distributions indicate a greater Maputaland-Pondoland-Albany region of endemism. S Afr J Sci 107:52–66CrossRefGoogle Scholar
  50. Perović D, Gámez-Virués S, Börschig C, Klein AM, Krauss J, Steckel J, Rothenwöhrer C, Erasmi S, Tscharntke T, Westphal C (2015) Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J Appl Ecol 52:505–513CrossRefGoogle Scholar
  51. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291CrossRefPubMedGoogle Scholar
  52. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1-131Google Scholar
  53. Proulx R, Fahrig L (2010) Detecting human-driven deviations from trajectories in landscape composition and configuration. Landsc Ecol 25:1479–1487CrossRefGoogle Scholar
  54. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791CrossRefGoogle Scholar
  55. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  56. Roques KG, O’Connor TG, Watkinson AR (2001) Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 38:268–280CrossRefGoogle Scholar
  57. Roslin T (2000) Dung beetle movements at two spatial scales. Oikos 91:323–335CrossRefGoogle Scholar
  58. Rousset F, Ferdy J-B (2014) Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography (Cop) 37:781–790CrossRefGoogle Scholar
  59. Royle JA, Wikle CK (2005) Efficient statistical mapping of avian count data. Environ Ecol Stat 12:225–243CrossRefGoogle Scholar
  60. Schindler S, von Wehrden H, Poirazidis K, Wrbka T, Kati V (2013) Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol Indic 31:41–48CrossRefGoogle Scholar
  61. Schuette P, Wagner AP, Wagner ME, Creel S (2013) Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol Conserv 158:301–312CrossRefGoogle Scholar
  62. Schulze CH, Waltert M, Kessler PJ, Pitopang R, Veddeler D, Mühlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14:1321–1333CrossRefGoogle Scholar
  63. Sirami C, Monadjem A (2012) Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Divers Distrib 18:390–400CrossRefGoogle Scholar
  64. Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64CrossRefGoogle Scholar
  65. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  66. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev Camb Philos Soc 87:661–685CrossRefPubMedGoogle Scholar
  67. Tshikae BP, Davis ALV, Scholtz CH (2013) Does an aridity and trophic resource gradient drive patterns of dung beetle food selection across the Botswana Kalahari? Ecol Entomol 38:83–95CrossRefGoogle Scholar
  68. Tubelis DP, Cowling A, Donnelly C (2004) Landscape supplementation in adjacent savannas and its implications for the design of corridors for forest birds in the central Cerrado, Brazil. Biol Conserv 118:353–364CrossRefGoogle Scholar
  69. VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2014) SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version 1.1-221Google Scholar
  70. Wilson JD, Morris AJ, Arroyo BE, Clark SC, Bradbury RB (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric Ecosyst Environ 75:13–30CrossRefGoogle Scholar
  71. Wright HL, Lake IR, Dolman PM (2012) Agriculture-a key element for conservation in the developing world. Conserv Lett 5:11–19CrossRefGoogle Scholar
  72. Wulder MA, Coops NC (2014) Satellites: make Earth observations open access. Nature 513:30–31CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Chevonne Reynolds
    • 1
    • 2
    • 3
    Email author
  • Robert J. FletcherJr.
    • 1
  • Celine M. Carneiro
    • 1
  • Nicole Jennings
    • 1
  • Alison Ke
    • 4
  • Michael C. LaScaleia
    • 5
  • Mbhekeni B. Lukhele
    • 6
  • Mnqobi L. Mamba
    • 6
  • Muzi D. Sibiya
    • 6
  • James D. Austin
    • 1
  • Cebisile N. Magagula
    • 6
  • Themba’alilahlwa Mahlaba
    • 6
  • Ara Monadjem
    • 6
  • Samantha M. Wisely
    • 1
  • Robert A. McCleery
    • 1
  1. 1.Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleUSA
  2. 2.DST/NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology (FIAO)University of Cape TownRondeboschSouth Africa
  3. 3.Statistics in Ecology, Environment and Conservation, Department of Statistical SciencesUniversity of Cape TownRondeboschSouth Africa
  4. 4.Department of Environmental Science, Policy and ManagementUniversity of California at BerkeleyBerkeleyUSA
  5. 5.Department of BiologyTufts UniversityMedfordUSA
  6. 6.Department of Biological SciencesUniversity of SwazilandKwaluseniSwaziland

Personalised recommendations