Advertisement

Landscape Ecology

, Volume 32, Issue 11, pp 2167–2185 | Cite as

The role of bioclimatic features, landscape configuration and historical land use in the invasion of an Asian tree in subtropical Argentina

  • Lia MonttiEmail author
  • Verónica Piriz Carrillo
  • Jorgelina Gutiérrez-Angonese
  • N. Ignacio Gasparri
  • Roxana Aragón
  • H. Ricardo Grau
Research Article

Abstract

Context

Knowing which factors determine the spread of plant invaders is a relevant issue in global ecology. Cultural landscapes both influence and are affected by exotic species. Although bioclimatic boundaries, seed sources and landscape configuration all control the invasion process, they have been mostly studied separately and independently from their distant drivers.

Objectives

We followed a multiscale approach to describe the invasion dynamics of the Asian tree (Ligustrum lucidum) in subtropical NW Argentina cultural landscapes by: (1) identifying the potential bioclimatic area of invasion, (2) mapping the currently invaded area in peri-urban focal sectors, and (3) quantitatively describing the landscape-scale patterns of invasion in relation to environmental and cultural variables.

Method

Niche models were used to map potential invasion area, remote sensing, GIS and field surveys to map patterns of invasion and their association to landscape and environmental variables.

Results

Climate suitability to L. lucidum extends over important ranges of the studied area, but currently invaded areas are mostly restricted to clusters around the main cities. The historical and demographic features of cities (e.g., date foundation, population) are important in predicting invaded forest location and spread. At local scale, invasion is associated to abandoned fields nearby urban centers, roads and rivers.

Conclusions

The invasion patterns of L. lucidum reflect the combined effect of historical socioeconomic connections between Asia and America, as well as the local cultural landscape history and configuration. Teleconnected cultural landscapes need to be explored as a theoretical framework for the study of biological invasions in the Anthropocene.

Keywords

Invasive species Ligustrum lucidum Species distribution Telecoupled cultural landscapes 

Notes

Acknowledgements

This study was supported by Argentinian National Council of Scientific and Technological Research (CONICET) and by Rufford Small Grant. We thank N. Diaz and MJ Orofino for the permanent help with English, our colleagues from IER who helped us in fieldwork and from Nanjing Forestry University (China) who facilitated us information about L. lucidum in native range and to Dr. T Kuemmerle and the anonymous reviewers for their useful comments.

Supplementary material

10980_2017_563_MOESM1_ESM.doc (72 kb)
Supplementary material 1 (DOC 72 kb)

References

  1. Aikio S, Duncan RP, Hulme PE (2010) Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119(2):370–378CrossRefGoogle Scholar
  2. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132(2):183–198CrossRefGoogle Scholar
  3. Aragón R, Groom M (2003) Invasion by Ligustrum lucidum (Oleaceae) in NW Argentina: early stage characteristics in different habitat types. Rev Biol Trop 51:59–70PubMedGoogle Scholar
  4. Aragón R, Morales JM (2003) Species composition and invasion in NW Argentinean secondary forests: effects of land use history, environment and landscape. J Veg Sci 14:195–204CrossRefGoogle Scholar
  5. Aslan CE, Rejmánek M, Klinger R (2012) Combining efficient methods to detect spread of woody invaders in urban–rural matrix landscapes: an exploration using two species of Oleaceae. J Appl Ecol 49:331–338CrossRefGoogle Scholar
  6. Ayup M, Montti L, Aragón R, Grau HR (2014) Invasion of Ligustrum lucidum (Oleaceae) in the Southern Yungas. Changes in habitat properties and decline in bird diversity. Acta Oecol 54:72–81CrossRefGoogle Scholar
  7. Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748CrossRefGoogle Scholar
  8. Bettencourt LM (2013) The origins of scaling in cities. Science 80(340):1438–1441CrossRefGoogle Scholar
  9. Bianchi AR (1981) Las precipitaciones en el Noroeste argentino. INTA. Estación Experimental Regional agropecuaria SaltaGoogle Scholar
  10. Blendinger PG, Ruggera RA, Núñez Montellano MG, Macchi L,  Zelaya PV, Álvarez MV, Martín E, Orsinaga Acosta O, Sánchez R, Haedo F (2012) Fine-tuning the fruit-tracking hypothesis: spatiotemporal links between fruit availability and fruit consumption by birds in Andean mountain forests. J Anim Ecol 81(6):1298–1310PubMedCrossRefGoogle Scholar
  11. Blundo C, Malizia L, Blake JG, Brown AD (2012) Tree species distribution in Andean forests: influence of regional and local factors. J Trop Ecol 28:83–95CrossRefGoogle Scholar
  12. Bonialian M (2014) China en la America Colonial. Bienes, Mercados, Comercio y cultura del consumo desde Mexico hasta Buenos Aires. México, Mora-BiblosGoogle Scholar
  13. Botham MS, Rothery P, Hulme PE, Hill MO, Preston CD, Roy DB (2009) Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers Distrib 15:338–345CrossRefGoogle Scholar
  14. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  15. Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709PubMedCrossRefGoogle Scholar
  16. Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. Instituto Nacional de Biodiversidad, San José, pp 623–659Google Scholar
  17. Chang MC, Qiu LQ, Green PS (1996) Oleaceae. Flora China 15:272–319Google Scholar
  18. Chiron F, Shirley S, Kark S (2009) Human-related processes drive the richness of exotic birds in Europe. Proc R Soc B 276:47–53PubMedCrossRefGoogle Scholar
  19. Chytrý M, Jarosik V, Pyšek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008a) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553PubMedCrossRefGoogle Scholar
  20. Chytrý M, Maskell LC, Pino J, Pyšek P, Vilá M, Font X, Smart SM (2008b) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458CrossRefGoogle Scholar
  21. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  22. Decker KL, Allen CR, Acosta L, Hellman ML, Jorgensen CF, Stutzman RJ, Unstad KM, Williams A, Yans M (2012) Land use, landscapes and biological invasions. Invasive Plant Sci Manag 5:108–116CrossRefGoogle Scholar
  23. Deines JM, Liu X, Liu J (2016) Telecoupling in urban water systems: an examination of Beijing’s imported water supply. Water Int 41(2):251–270CrossRefGoogle Scholar
  24. Easdale TA, Healey JR, Grau HR, Malizia A (2007) Tree life histories in a montane subtropical forest: species differ independently by shade-tolerance, turnover rate and substrate preference. J Ecol 95:1234–1239CrossRefGoogle Scholar
  25. Eastman JR (2016) TerrSet. Geospatial monitoring and modeling system. Clark Labs, Clark University, WorcesterGoogle Scholar
  26. Essl F, Dullinger S, Kleinbauer I (2009) Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during the invasion of Austria. Preslia 81:119–133Google Scholar
  27. Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilà M, Genovesi P, Gherardi F, Desprez-Loustau ML, Roques A, Pyšek P (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108:203–207PubMedCrossRefGoogle Scholar
  28. Ferreras AE, Torres C, Galetto L (2008) Fruit removal of an invasive exotic species (Ligustrum lucidum) in a fragmented landscape. J Arid Environ 72:1573–1580CrossRefGoogle Scholar
  29. Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13(4):476–485CrossRefGoogle Scholar
  30. Fitzpatrick MC, Preisser EL, Porter A, Elkinton J, Ellison AM (2012) Modeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North America. Ecol Appl 22(2):472–486PubMedCrossRefGoogle Scholar
  31. Flynn DO, Giráldez A (2002) Cycles of silver: global economic unity through the mid-eighteenth century. J World Hist 13(2):391–427CrossRefGoogle Scholar
  32. Flynn DO, Giráldez A, Von Glahn R (2003) Global connections and monetary history, 1470–1800. Ashgate, Aldershot, pp 1–34Google Scholar
  33. Foody GM, Mathur A (2004) Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens Environ 93(1):107–117CrossRefGoogle Scholar
  34. Fuentes N, Saldaña A, Kühn I, Klotz S (2015) Climatic and socio-economic factors determine the level of invasion by alien plants in Chile. Plant Ecol Divers 30:609–628Google Scholar
  35. Gasparri NI, le Polain de Waroux Y (2014) The coupling of South American soybean and cattle production frontiers: new challenges for conservation policy and land change science. Conserv Lett 8(4):290–298CrossRefGoogle Scholar
  36. Gavier-Pizarro GI, Kuemmerle T, Hoyos LE, Stewart SI, Huebner CD, Keuler NS, Radeloff VC  (2012) Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM? Satellite data and support vector machines in Córdoba, Argentina. Remote Sens Environ 122:134–145CrossRefGoogle Scholar
  37. Ghersa CM, de la Fuente E, Suarez S, Leon RJC (2002) Woody species invasion in the Rolling Pampas grasslands, Argentina. Agric Ecosyst Environ 88:271–278CrossRefGoogle Scholar
  38. Gormley AM, Forsyth DM, Griffioen P, Lindeman M, Ramsey DSL, Scroggie MP, Woodford L (2011) Using presence-only and presence–absence data to estimate the current and potential distributions of established invasive species. J Appl Ecol 48:25–34PubMedPubMedCentralCrossRefGoogle Scholar
  39. Grau HR, Aragón R (2000) Ecología de los árboles invasores de la Sierra de San Javier. In: Grau HR, Aragón R (eds) Arboles exóticos de las Yungas Argentinas. LIEY-UNT, Tucumán, pp 5–20Google Scholar
  40. Grau HR, Hernández ME, Gutierrez J, Gasparri NI, Paolini L (2008) A peri-urban forest neotropical forest transition and its consequences for environmental services. Ecol Soc 13(1):35CrossRefGoogle Scholar
  41. Grau HR, Paolini L, Malizia A, Carilla J (2010) Distribución, estructura y dinámica de los bosques de la sierra de San Javier (Tucumán, Argentina). In: Grau HR (ed) Ecología de una interfase natural urbana. La sierra de San Javier y el Gran San Miguel de Tucumán. EDUNT, Tucumán, pp 33–50Google Scholar
  42. Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94(4):526–532PubMedCrossRefGoogle Scholar
  43. Guilhermetti GC, Vogel GF, Martinkoski L, Mokochinski FM (2013) Aspectos da distribuicão de Ligustrum lucidum W.T.Ainton em diferentes ecossistemas: revisão bibliográfica (aspects of the distribution Ligustrum lucidum W.T.Ainton in different ecosystems: literature review). Rev Verde Agroecol Desenvolv Sustent 8:171–176Google Scholar
  44. Gutiérrez-Angonese J (2015) Historia de uso del territorio en el área peri-urbana de la Sierra de San Javier y el Gran San Miguel de Tucumán, Argentina (1972–2010). Dissertation, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  45. Gutiérrez-Angonese J, Grau HR (2014) Assessment of swaps and persistence in land cover changes in a subtropical periurban region, NW Argentina. Landsc Urban Plan 127:83–93CrossRefGoogle Scholar
  46. Hijamans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surface for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  47. Hoyos LE, Gavier-Pizarro GI, Kuemmerle T, Bucher EH, Radeloff VC, Tecco PA (2010) Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina. Biol Invasions 12:3261–3275CrossRefGoogle Scholar
  48. Hsu CW, Chang, CC, Lin, CJ (2007) A practical guide to support vector classification. National Taiwan University. http://ntu.csie.org/~cjlin/papers/guide.pdf
  49. Huang C, Davis LS, Townshend JRG (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23:725–749CrossRefGoogle Scholar
  50. Hufbauer RA, Facon B, Ravigne V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 5(1):89–101PubMedCrossRefGoogle Scholar
  51. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18CrossRefGoogle Scholar
  52. Hulme PE (2011) Addressing the threat to biodiversity from botanic gardens. Trends Ecol Evol 26:168–174PubMedCrossRefGoogle Scholar
  53. Hulme PE, Bacher S, Kenis M, S. Klotz, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414CrossRefGoogle Scholar
  54. Hunzinger H (1997) Hydrology of montane forests in the Sierra de San Javier, Tucumán, Argentina. Mt Res Dev 17:299–308CrossRefGoogle Scholar
  55. INDEC (2010) Censo Nacional de Población, Hogares y Viviendas 2010. Instituto Geográfico Nacional (IGN). http://www.sig.indec.gov.ar/censo2010/
  56. Karalius T, Alpert P (2010) High abundance of introduced plants on ancient Native American middens. Biol Invasions 12:1125–1132CrossRefGoogle Scholar
  57. Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. N Phytol 176:635–643CrossRefGoogle Scholar
  58. Lesschen JP, Verburg PH, Staal, SJ (2005) Statistical methods for analysing the spatial dimension of changes in land use and farming systems. International Livestock Research InstituteGoogle Scholar
  59. Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2(3):18–22Google Scholar
  60. Liu J, Hull V, Batistella M, DeFries R, Dietz T, Fu F, Hertel TW, Izaurralde RC, Lambin EF, Li S, Martinelli LA, McConnell WJ, Moran EF, Naylor R, Ouyang Z, Polenske KR, Reenberg A, de Miranda Rocha G, Simmons CS, Verburg PH, Vitousek PM, Zhang F, Zhu C (2013a) Framing sustainability in a telecoupled world. Ecol Soc 18:26CrossRefGoogle Scholar
  61. Liu C, White M, Newell G (2013b) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40(4):778–789CrossRefGoogle Scholar
  62. Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasion 2:111–122CrossRefGoogle Scholar
  63. Malizia A, Osinaga-Acosta O, Powell P, Aragón R (2017) Invasion of Ligustrum lucidum (Oleaceae) in subtropical secondary forests of NW Argentina: declining growth rates of abundant native tree species. J Veg Sci. Accepted Author Manuscript. doi: 10.1111/jvs.12572
  64. Mann CC (2006) 1493 Una nueva historia del mundo después de Colón. Ed. Clave Intelectual, MadridGoogle Scholar
  65. McGarigal KY, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12(2):335–345CrossRefGoogle Scholar
  66. McGarigal KY, Marks B (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research StationGoogle Scholar
  67. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 6(10):1058–1069CrossRefGoogle Scholar
  68. Miller AL, Wiser SK, Sullivan JJ, Duncan RP (2015) Creek habitats as sources for the spread of an invasive herb in a New Zealand mountain landscape. NZ J Ecol 39(1):71Google Scholar
  69. Montti L, Ayup MM, Aragón R, Qi W, Ruan H, Fernández R, Casertano S, Zou X (2016) Herbivory and the success of Ligustrum lucidum: evidence from a comparison between native and novel ranges. Aust J Bot 64(3):181–192Google Scholar
  70. Mosher ES, Silander J, Andrew ML (2009) The role of land-use history in major invasion by woody plant species in the northeastern North American landscape. Biol Invasions 11:2317–2328CrossRefGoogle Scholar
  71. O’Reilly-Nugent A, Palit R, Lopez-Aldana A, Medina-Romero M, Wandrag E, Duncan RP (2016) Landscape effects on the spread of invasive species. Curr Landsc Ecol Rep 1(3):107–114CrossRefGoogle Scholar
  72. Panetta FD (2000) Fates of fruits and seeds of Ligustrum lucidum W.T.Ait. and L. sinense Lour. maintained under natural rainfall or irrigation. Aust J Bot 48:701–706CrossRefGoogle Scholar
  73. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117CrossRefGoogle Scholar
  74. Peñuelas J, Sardans J, Llusia Owen S, Carnicer J, Giambelluca TW, Rezende EL, Waite M, Niinemets Ü (2010) Faster returns on leaf economics and different biogeochemical niche in invasive compared with native plant species. Glob Change Biol 16:2171–2185CrossRefGoogle Scholar
  75. Pergl J, Sádlo J, Petřík P, Danihelka J, Chrtek Jr J, Hejda M, Lenka M, Perglová I, Štajerová K, Pyšek P (2016) Dark side of the fence: ornamental plants as a source of wild-growing flora in the Czech Republic. Preslia 88(2):163–184Google Scholar
  76. Peterson AT (2003) Predicting the geography of species invasions via ecological niche modeling. Q Rev Biol 78:419–433PubMedCrossRefGoogle Scholar
  77. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  78. Pickett STA, Collins SL, Armesto JJ (1987) Models, mechanisms and pathways of succession. Bot Rev 53:335–371CrossRefGoogle Scholar
  79. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Res 35:25–55CrossRefGoogle Scholar
  80. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V,  Essl F,  Genovesi, Gherardi F, Hejdaa M, Kark S, Lambdon PW, Desprez-Loustau ML, Nentwig W,  Pergl J, Poboljšaj K, Rabitsch W, Roques A,  Roy DB,  Shirley S, Solarz W,  Vilà M,  Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107(27):12157–12162PubMedPubMedCentralCrossRefGoogle Scholar
  81. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/
  82. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661CrossRefGoogle Scholar
  83. Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Glob Ecol Biogeogr 18(6):674–687CrossRefGoogle Scholar
  84. Rödder D, Solé M, Böhme W (2008) Predicting the potential distributions of two alien invasive house geckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus mabouia). Northwest J Zool 4(2):236–246Google Scholar
  85. Sadori L, Mercuri AM, Mariotti Lippi M (2010) Reconstructing past cultural landscape and human impact using pollen and plant macroremains. Plant Biosyst 144(4):940–951CrossRefGoogle Scholar
  86. Seto KC, Reenberg A, Boone CG, Fragkias M, Haase D, Langanke T, Marcotullio P, Munroe DK, Olah B, Simon D (2012) Urban land teleconnections and sustainability. Proc Natl Acad Sci USA 109(20):7687–7692PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sharma GP, Esler KJ, Blignaut JN (2010) Determining the relationship between invasive alien species density and a country’s socio-economic status. S Afr J Sci 106:38–43CrossRefGoogle Scholar
  88. Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244CrossRefGoogle Scholar
  89. Standish RJ, Cramer VA, Hobbs RJ (2008) Land-use legacy and the persistence of invasive Avena barbata on abandoned farmland. J Appl Ecol 45:1576–1583CrossRefGoogle Scholar
  90. Tecco PA, Gurvich DE, Díaz S, Pérez-Harguindeguy N, Cabido M (2006) Positive interaction between invasive plants: the influence of Pyracantha angustifolia on the recruitment of native and exotic woody species. Austral Ecol 31:293–300CrossRefGoogle Scholar
  91. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. N Phytol 176(2):256–273CrossRefGoogle Scholar
  92. Thuiller W, Richardson DM, Rouget M, Proches S, Wilson JRU (2006) Interactions between environment, species traits and human uses describe patterns of plant invasions. Ecology 87:1755–1769PubMedCrossRefGoogle Scholar
  93. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250CrossRefGoogle Scholar
  94. Torresin JA, Zamboni LP, Sione WF, Rodriguez E, Aceñolaza PG (2013) Modelado de la distribución espacial de árboles exóticos invasores (AEI) en el Parque Nacional Pre-Delta (Entre Ríos Argentina). Multequina 22:2013Google Scholar
  95. Vilá M, Ibañez I (2011) Plant invasions in the landscape. Landscape Ecol 26:461–472CrossRefGoogle Scholar
  96. Vilá M, Valladares F, Traveset A, Santamaría L, Castro P (2008) Invasiones biológicas. Consejo Superior de Investigaciones Científicas, MadridGoogle Scholar
  97. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:218–228Google Scholar
  98. Wang HF, Lopez-Pujol J, Meyerson L, Qiu JX, Wang XK, Ouyang ZY (2011a) Biological invasions in rapidly urbanizing areas: a case study of Beijing, China. Biodivers Conserv 20:2483–2509CrossRefGoogle Scholar
  99. Wang R, Wang JF, Qiu ZJ, Meng B, Wan FH, Wang YZ (2011b) Multiple mechanisms underlie rapid expansion of an invasive alien plant. N Phytol 191(3):828–839CrossRefGoogle Scholar
  100. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14(5):763–773CrossRefGoogle Scholar
  101. Xu Z (2015) Potential distribution of invasive alien species in the Upper Ili River basin: determination and mechanism of bioclimatic variables under climate change. Environ Earth Sci 73(2):779–786CrossRefGoogle Scholar
  102. Zamora Nazca LB, Montti L, Grau HR, Paolini L (2014) Efectos de la invasión del ligustro, Ligustrum lucidum, en la dinámica hídrica de las Yungas del noroeste Argentino. Bosque 35(2):195–205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Instituto de Ecología Regional-CONICET-Universidad Nacional de TucumánYerba BuenaArgentina
  2. 2.Instituto de Investigaciones Marinas y Costeras-CONICET, Instituto de Geología de Costas y del Cuaternario Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.Laboratorio de Socio-ecosistemasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations