Direct and indirect effects of agricultural intensification on a host-parasitoid system on the ribwort plantain (Plantago lanceolata L.) in a landscape context

  • Christine Herbst
  • Sabrina Arnold-Schwandner
  • Torsten Meiners
  • Marcell K. Peters
  • Christoph Rothenwöhrer
  • Juliane Steckel
  • Nicole Wäschke
  • Catrin Westphal
  • Elisabeth Obermaier
Research Article

Abstract

Context

Intensification of land use is known as a major driver of worldwide decline in biodiversity. Trophic interactions might be especially affected by a changing landscape structure due to agricultural intensification.

Objective

In this study we investigated the effects of increasing land use intensity on a tritrophic system at different spatial scales in a landscape context.

Methods

We examined two weevil species, Mecinus labilis Herbst and M. pascuorum Gyllenhal, as well as their common parasitoid, Mesopolobus incultus Walker, living on a common native herb, the ribwort plantain (Plantago lanceolata L.), at 76 sites in three geographic regions in Germany. The effect of land use intensity on species abundances was analysed across a range of spatial scales (100–2000 m) around the study sites.

Results

In all three regions and across most spatial scales, an increasing proportion of intensively managed grasslands in the surrounding landscape directly negatively influenced herbivore abundance. An increasing proportion of semi-natural habitats had a direct positive influence on herbivore abundance. The abundance of M. labilis was best explained at radii of r = 1500–2000 m, that of M. pascuorum at r = 100–500 m. The parasitoid, M. incultus, was indirectly influenced by land use intensity via the density of its two hosts.

Conclusion

Agricultural intensification of grasslands can profoundly affect the abundance of their herbivorous and entomophagous fauna at landscape scale. This may have important implications for landscape management and the conservation of higher trophic level organisms in agricultural landscapes.

Keywords

Grassland Landscape composition Land use intensity Host-parasitoid interaction Ribwort plantain Spatial scale Tritrophic system Trophic interaction 

Supplementary material

10980_2017_562_MOESM1_ESM.docx (893 kb)
Supplementary material 1 (DOCX 893 kb)

References

  1. Bianchi F, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727CrossRefPubMedPubMedCentralGoogle Scholar
  2. Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, De Blust G, De Cock R, Diekötter T, Dietz H, Dirksen J, Dormann C, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Maelfait JP, Opdam P, Roubalova M, Schermann A, Schermann N, Schmidt T, Schweiger O, Smulders MJM, Speelmans M, Simova P, Verboom J, Van Wingerden WKRE, Zobel M, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150CrossRefGoogle Scholar
  3. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis in R. Springer, New YorkGoogle Scholar
  4. Braschler B, Marini L, Thommen GH, Baur B (2009) Effects of small-scale grassland fragmentation and frequent mowing on population density and species diversity of orthopterans: a long-term study. Ecol Entomol 34:321–329CrossRefGoogle Scholar
  5. Caballero-López B, Bommarco R, Blanco-Moreno JM, Sans FX, Pujade-Villar J, Rundlöf M, Smith HG (2012) Aphids and their natural enemies are differently affected by habitat features and local and landscape scales. Biol Control 63:222–229CrossRefGoogle Scholar
  6. Cease AJ, Elser J, Ford C, Hao S, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467CrossRefPubMedGoogle Scholar
  7. Clough J, Kruess A, Tscharntke T (2007) Local and landscape factors in differently managed arable fields affect the insect herbivore community of a non-crop plant species. J Appl Ecol 44:22–28CrossRefGoogle Scholar
  8. Crawley MJ (2012) The R book, 2nd edn. Wiley, West SussexCrossRefGoogle Scholar
  9. Daoust SP, Bélisle M, Savage J, Robillard A, Baeta R, Brodeur J (2012) Direct and indirect effects of landscape structure on a tri-trophic system within agricultural lands. Ecosphere 3(11). Article Nr. UNSP 94Google Scholar
  10. Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agr Ecosys Environ 98:321–329CrossRefGoogle Scholar
  11. Dickason EA (1968) Observations on the biology of Gymnaetron pascuorum (Gyll.) (Coleoptera: Curculionidae). Coleopts Bull 22:11–15Google Scholar
  12. Dierschke H, Briemle G (2002) Kulturgrasland: Wiesen, Weiden und verwandte Stauden-fluren. Verlag Eugen Ulmer GmbH & Co., StuttgartGoogle Scholar
  13. Donald PF, Sanderson FJ, Burfield IJ, van Bommel PJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agr Ecosys Environ 116:189–196CrossRefGoogle Scholar
  14. Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138CrossRefGoogle Scholar
  15. Dyer LA, Coley PD (2002) Tritrophic interactions in tropical versus temperate communities. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, MA, pp 67–88CrossRefGoogle Scholar
  16. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  17. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze KG, GöttingenGoogle Scholar
  18. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112CrossRefPubMedGoogle Scholar
  19. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser W (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485CrossRefGoogle Scholar
  20. Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241CrossRefPubMedGoogle Scholar
  21. Gagic V, Tscharntke T, Dormann CF, Gruber B, Wilstermann A, Thies C (2011) Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc R Soc B 278:2946–2953CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, Jong HD, Simons NK, Klein A-M, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter I, Weiner CN, Weisser W, Werner M, Tscharntke T, Westphal C (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol Appl 19:143–154CrossRefPubMedGoogle Scholar
  24. Gonthier DJ, Ennis KK, Farinas S, Hsieh HY, Iverson AL, Batary P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B 281:20141358CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hancock C, Wäschke N, Schumacher U, Linsenmair KE, Meiners T, Obermaier E (2013) Fertilizer application decreases insect abundance on Plantago lanceolata: a large-scale experiment in three geographic regions. Arthropod Plant Interact 7:147–158CrossRefGoogle Scholar
  26. Heisswolf A, Reichmann S, Poethke HJ, Schröder B, Obermaier E (2009) Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape. J Insect Conserv 13:165–175CrossRefGoogle Scholar
  27. Hejcman M, Hejcmanová P, Pavlu V, Benes J (2013) Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–363CrossRefGoogle Scholar
  28. Hendrickx F, Malefait J-P, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351CrossRefGoogle Scholar
  29. Herbst C, Wäschke N, Halboth I, Reschke S, Barto K, Meiners T, Obermaier E (2013) Land use intensification influences higher trophic levels without affecting the availability of the host plant. Entomol Exp Appl 147:269–281CrossRefGoogle Scholar
  30. Holt RD (1996) Food webs in space: an island biogeographic perspective. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman & Hall, London, pp 313–323CrossRefGoogle Scholar
  31. Holt RD, Lawton JH, Polis GA, Martinez MD (1999) Trophic rank and the species-area relationship. Ecology 80:1495–1504CrossRefGoogle Scholar
  32. Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B 278:3444–3451CrossRefPubMedPubMedCentralGoogle Scholar
  33. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500CrossRefPubMedGoogle Scholar
  34. Jonsson M, Buckley HL, Case BS, Wratten SD, Hale RJ, Didham K (2012) Agricultural intensification drives landscape-context effects on host-parasitoid interactions in agroecosystems. J Appl Ecol 49:706–714Google Scholar
  35. Kruess A (2003) Effects of landscape structure and habitat type on a plant-herbivore-parasitoid community. Ecography 26:283–290CrossRefGoogle Scholar
  36. Lefcheck JS (2016) Piecewise SEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579CrossRefGoogle Scholar
  37. Liu Y, Rothenwoehrer C, Scherber C, Batáry P, Elek Z, Steckel J, Erasmi S, Tscharntke T, Westphal C (2014) Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landscape Ecol 29:529–540CrossRefGoogle Scholar
  38. Lohse GA (1983) Unterfamilie Mecininae. In: Freude H, Harde KW, Lohse GA (eds) Die Käfer Mitteleuropas, Band 11. Goecke & Evers Verlag, KrefeldGoogle Scholar
  39. Marino PC, Landis DA (1996) Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol Appl 6:276–284CrossRefGoogle Scholar
  40. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS v3: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  41. Mohd Norowi HM, Perry JN, Powell W, Rennolls K (1999) The effect of spatial scale on interactions between two weevils and their food plant. Acta Oecol 20:537–549CrossRefGoogle Scholar
  42. Mohd Norowi HM, Perry JN, Powell W, Rennolls K (2000) The effect of spatial scale on interactions between two weevils and their parasitoid. Ecol Entomol 25:188–196CrossRefGoogle Scholar
  43. Obermaier E, Zwölfer H (1999) Plant quality or quantity? Host exploitation strategies in three Chrysomelidae species associated with Asteraceae host plants. Entomol Exp Appl 92:165–177CrossRefGoogle Scholar
  44. Purtrauf T, Dauber J, Wolters V (2005) The response of carabids to landscape simplification differs between trophic groups. Oecologia 142:458–464CrossRefGoogle Scholar
  45. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  46. Rheinheimer J, Hassler M (2013) Die Rüsselkäfer Baden-Württembergs. Verlag Regionalkultur, HeidelbergGoogle Scholar
  47. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515CrossRefPubMedGoogle Scholar
  48. Shipley B (2004) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, CambridgeGoogle Scholar
  49. Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368CrossRefPubMedGoogle Scholar
  50. Shipley B (2013) The AIC model selection method applied to path analytic models compared using ad-separation test. Ecology 94:560–564CrossRefPubMedGoogle Scholar
  51. Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64CrossRefGoogle Scholar
  52. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432CrossRefGoogle Scholar
  53. Steffan-Dewenter I, Münzenberg U, Tscharntke T (2001) Pollination, seed set and seed predation on a landscape scale. Proc R Soc Lond B 268:1685–1690CrossRefGoogle Scholar
  54. Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25CrossRefGoogle Scholar
  55. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895CrossRefPubMedGoogle Scholar
  56. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wagner TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  57. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  58. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Frund J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685CrossRefPubMedGoogle Scholar
  59. van Nouhuys S, Hanski I (2002) Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 124–147CrossRefGoogle Scholar
  60. Veres A, Petit S, Conord C, Lavigne C (2013) Does landscape composition affect pest abundance and their control by natural enemies? a review. Agric Ecosyst Environ 166:110–117CrossRefGoogle Scholar
  61. Wäschke N, Hancock C, Hilker M, Obermaier E, Meiners T (2015) Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape? Oecologia 179:281–292CrossRefPubMedGoogle Scholar
  62. White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, BerlinCrossRefGoogle Scholar
  63. Wrbka T, Erb K, Schulz NB, Peterseil J, Hahn C, Haberl H (2004) Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21:289–306CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Christine Herbst
    • 1
  • Sabrina Arnold-Schwandner
    • 1
  • Torsten Meiners
    • 2
    • 4
  • Marcell K. Peters
    • 1
  • Christoph Rothenwöhrer
    • 3
  • Juliane Steckel
    • 1
  • Nicole Wäschke
    • 2
  • Catrin Westphal
    • 3
  • Elisabeth Obermaier
    • 1
    • 5
  1. 1.Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
  2. 2.Institute of Biology, Applied Zoology/Animal EcologyFreie Universität BerlinBerlinGermany
  3. 3.Agroecology, Department of Crop SciencesGeorg-August-University GöttingenGöttingenGermany
  4. 4.Federal Research Centre for Cultivated Plants, Ecological Chemistry, Plant Analysis and Stored Product ProtectionJulius Kühn-Institut (JKI)BerlinGermany
  5. 5.Ecological Botanical GardenUniversity of BayreuthBayreuthGermany

Personalised recommendations