Advertisement

Landscape Ecology

, Volume 32, Issue 11, pp 2205–2218 | Cite as

How do land-use legacies affect ecosystem services in United States cultural landscapes?

Research Article

Abstract

Context

Landscape-scale studies of ecosystem services (ES) have increased, but few consider land-use history. Historical land use may be especially important in cultural landscapes, producing legacies that influence ecosystem structure, function, and biota that in turn affect ES supply.

Objectives

Our goal was to generate a conceptual framework for understanding when land-use legacies matter for ES supply in well-studied agricultural, urban, and exurban US landscapes.

Methods

We synthesized illustrative examples from published literature in which landscape legacies were demonstrated or are likely to influence ES.

Results

We suggest three related conditions in which land-use legacies are important for understanding current ES supply. (1) Intrinsically slow ecological processes govern ES supply, illustrated for soil-based and hydrologic services impaired by slowly processed pollutants. (2) Time lags between land-use change and ecosystem responses delay effects on ES supply, illustrated for biodiversity-based services that may experience an ES debt. (3) Threshold relationships exist, such that changes in ES are difficult to reverse, and legacy lock-in disconnects contemporary landscapes from ES supply, illustrated by hydrologic services. Mismatches between contemporary landscape patterns and mechanisms underpinning ES supply yield unexpected patterns of ES.

Conclusions

Today’s land-use decisions will generate tomorrow’s legacies, and ES will be affected if processes underpinning ES are affected by land-use legacies. Research priorities include understanding effects of urban abandonment, new contaminants, and interactions of land-use legacies and climate change. Improved understanding of historical effects will improve management of contemporary ES, and aid in decision-making as new challenges to sustaining cultural landscapes arise.

Keywords

Land-use change Urban ecosystems Exurban ecosystems Agricultural ecosystems Historical ecology 

Notes

Acknowledgements

We thank Matthias Bürgi for inviting us to develop this paper, and four anonymous reviewers for constructive feedback on an earlier version. We acknowledge funding from the US National Science Foundation, especially the Long-term Ecological Research (DEB-1440297 and DEB-1440485) and Water, Sustainability and Climate (DEB-1038759) Programs, and support to MGT from the University of Wisconsin-Madison Vilas Trust. CZ acknowledges support from a Natural Science and Engineering Research Council of Canada doctoral fellowship.

References

  1. Ager S (2015) Taking back Detroit. Part 2: rethinking Detroit. National Geographic. http://www.nationalgeographic.com/taking-back-detroit/explore-detroit.html. Accessed April 2017
  2. Aguirre-Gutiérrez J, Biesmeijer JC, van Loon EE, Reemer M, WallisDeVries MF, Carvalheiro LG (2015) Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Divers Distrib 21:1129–1140CrossRefGoogle Scholar
  3. Alanen AR, Melnick RZ (2000) Preserving cultural landscapes in America. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  4. Alstad AO, Damschen EI, Givnish TJ, Harrington JA, Leach MK, Rogers DA, Waller DM (2016) The pace of plant community change is accelerating in remnant prairies. Sci Adv 2:e1500975PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71(3):355–366CrossRefGoogle Scholar
  6. Beauregard RA (2012) Strategic thinking for distressed neighborhoods. In: Dewar ME, Thomas JM (eds) The city after abandonment. University of Pennsylvania Press, Philadelphia, pp 227–243Google Scholar
  7. Bennett EM (2017) Research frontiers in ecosystem service science. Ecosystems 20:31–37CrossRefGoogle Scholar
  8. Bennett EM, Carpenter SR, Clayton MK (2005) Soil phosphorus variability: scale-dependence in an urbanizing agricultural landscape. Landscape Ecol 20:389–400CrossRefGoogle Scholar
  9. Bennett AB, Gratton C (2013) Floral diversity increases beneficial arthropod richness and decreases variability in arthropod community composition. Ecol Appl 23:86–95PubMedCrossRefGoogle Scholar
  10. Bennett EM, Reed-Andersen T, Houser JN, Gabriel JR (1999) A phosphorus budget for the Lake Mendota watershed. Ecosystems 2(1):69–75CrossRefGoogle Scholar
  11. Betz CR, Balousek J, Fries G, Nowak P (2005) Lake Mendota: improving water quality. LakeLine 25:47–52Google Scholar
  12. Blumstein M, Thompson JR (2015) Land-use impacts on the quantity and configuration of ecosystem service provisioning in Massachusetts, USA. J Appl Ecol 52:1009–1019CrossRefGoogle Scholar
  13. Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu Rev Environ Resourc 32:67–98CrossRefGoogle Scholar
  14. Broward County Climate Change Action Plan (2015) Local strategy to address global climate change. http://www.broward.org/NaturalResources/ClimateChange/Documents/BrowardCAPReport2015.pdf. Accessed October 2016
  15. Brown DG, Johnson KM, Loveland TR (2005) Rural land-use trends in the conterminous United States, 1950–2000. Ecol Appl 15:1851–1863CrossRefGoogle Scholar
  16. Brudvig LA, Damschen EI (2010) Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition. Ecography 34:257–266CrossRefGoogle Scholar
  17. US Census Bureau (2010) Michigan census of population. http://www.census.gov/quickfacts/table/PST045215/26. Accessed October 2016
  18. Bürgi M, Gimmi U (2007) Three objectives of historical ecology: the case of litter collecting in Central European forests. Landscape Ecol 22:77–87CrossRefGoogle Scholar
  19. Bürgi M, Östlund L, Mladenoff D (2017) Legacy effects of human land use: ecosystems as time-lagged systems. Ecosystems 20:94–103CrossRefGoogle Scholar
  20. Burkhard B, Crossman N, Nedkov S, Petz K, Alkemade R (2013) Mapping and modelling ecosystem services for science, policy and practice. Ecosyst Serv 4:1–3CrossRefGoogle Scholar
  21. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67PubMedCrossRefGoogle Scholar
  22. Carpenter SR, Lathrop RC (2008) Probabilistic estimate of a threshold for eutrophication. Ecosystems 11:601–613CrossRefGoogle Scholar
  23. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  24. Carpenter SR, Lathrop RC, Nowak P, Bennett EM, Reed T, Soranno PA (2006) The ongoing experiment: restoration of Lake Mendota and its watershed. In: Magnuson JJ, Kratz TK, Benson BJ (eds) Long-term dynamics of lakes in the landscape: long-term ecological research on north temperate lakes. Oxford University Press, Oxford, pp 236–256Google Scholar
  25. Carpenter SR, Booth EG, Gillon S, Kucharik CJ, Loheide S, Mase AS, Motew M, Qiu J, Rissman AR, Seifert J, Soylu E, Turner M, Wardropper CB (2015a) Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecol Soc 20:art10CrossRefGoogle Scholar
  26. Carpenter SR, Booth EG, Kucharik CJ, Lathrop RC (2015b) Extreme daily loads: role in annual phosphorus input to a north temperate lake. Aquat Sci 77:71–79CrossRefGoogle Scholar
  27. Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conservation planning for ecosystem services. PLoS Biol 4:e379PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597PubMedCrossRefGoogle Scholar
  29. Connor MS, Davis JA, Leatherbarrow J, Greenfield BK, Gunther A, Hardin D, Mumley T, Orama JJ, Wermed C (2007) The slow recovery of San Francisco Bay from the legacy of organochlorine pesticides. Environ Res 105:87–100PubMedCrossRefGoogle Scholar
  30. Cousins SA, Eriksson O (2002) The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landscape Ecol 17:517–529CrossRefGoogle Scholar
  31. Dallimer M, Davies ZG, Díaz-Porras DF, Irvine KN, Maltby L, Warren PH, Armsworth PR, Gaston KJ (2015) Historical influences on the current provision of multiple ecosystem services. Glob Environ Chang 31:307–317CrossRefGoogle Scholar
  32. Davis JA, Hetzel F, Oram JJ, McKee LJ (2007) Polychlorinated biphenyls (PCBs) in San Francisco Bay. Environ Res 105:67–86PubMedCrossRefGoogle Scholar
  33. Dean KE, Suarez MP, Rifai HS, Palachek RM, Koenig L (2009) Bioaccumulation of polychlorinated dibenzodioxins and dibenzofurans in catfish and crabs along an estuarine salinity and contamination gradient. Environ Toxicol Chem 28:2307–2317PubMedCrossRefGoogle Scholar
  34. Delcourt PA, Delcourt HR (2004) Prehistoric native Americans and ecological change: human ecosystems in eastern North America since the Pleistocene. Cambridge University Press, New YorkGoogle Scholar
  35. Detroit Future City (2013) http://detroitworksproject.com/research-tools/key-topics/. Accessed October 2016
  36. Dewar M, Thomas JM (eds) (2012) The city after abandonment. University of Pennsylvania Press, PhiladelphiaGoogle Scholar
  37. Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycl Agroecosys 46:237–256CrossRefGoogle Scholar
  38. Dijkstra JA, Buckman KL, Ward D, Evans DW, Dionne M, Chen CY (2013) Experimental and natural warming elevates mercury concentrations in estuarine fish. PLoS ONE 8:e58401PubMedPubMedCentralCrossRefGoogle Scholar
  39. Donovan S, Goldfuss C, Holdren J (2015) Memorandum for Executive Departments and Agencies: Incorporating ecosystem services into Federal decision making. https://www.whitehouse.gov/sites/default/files/omb/memoranda/2016/m-16-01.pdf. Accessed October 2016
  40. Duke JM, Messer KD, Michael HA, Sparks DL (2014) The joint risks of anticipated sea-level rise and coastal contaminated sites: economic and scientific evidence. University of Delaware, Department of Applied Economics and Statistics Research Report 14-10Google Scholar
  41. Dullinger S, Essl F, Rabitsch W (2013) Europe’s other debt crisis caused by the long legacy of future extinctions. Proc Natl Acad Sci USA 110:7342–7347PubMedPubMedCentralCrossRefGoogle Scholar
  42. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82PubMedCrossRefGoogle Scholar
  43. Eigenbrod F, Armsworth PR, Anderson BJ, Heinemeyer A, Gillings G, Roy DB, Thomas CD, Gaston KJ (2010) The impact of proxy-based methods on mapping the distribution of ecosystem services. J Appl Ecol 47:377–385CrossRefGoogle Scholar
  44. Elliott KJ, Vose JM, Rankin D (2014) Herbaceous species composition and richness of mesophytic cove forests in the southern Appalachians: synthesis and knowledge gaps 1. J Torrey Bot Soc 141:39–71CrossRefGoogle Scholar
  45. Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Phil Trans R Soc A 369:1010–1035PubMedCrossRefGoogle Scholar
  46. Essl F, Dullinger S, Rabitsch W, Hulme PE, Pysek P, Wilson JRU, Richardson DM (2015) Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers Distrib 21:534–547CrossRefGoogle Scholar
  47. Flinn KM, Marks PL (2004) Land-use history and forest herb diversity in Tompkins County, New York, USA. In: Honnay O, Verheyen K, Bossuyt B, Hermy M (eds) Forest biodiversity: lessons from history for conservation. CABI, Wallingford, pp 81–95CrossRefGoogle Scholar
  48. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  49. Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A (2003) The importance of land-use legacies to ecology and conservation. Bioscience 53:77–88CrossRefGoogle Scholar
  50. Fraterrigo JM, Turner MG, Pearson SM (2005) Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75(2):215–230CrossRefGoogle Scholar
  51. Genkai-Kato M, Carpenter SR (2005) Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86:210–219CrossRefGoogle Scholar
  52. Gillon S, Booth EG, Rissman AR (2016) Shifting drivers and static baselines in environmental governance: challenges for improving and proving water quality outcomes. Reg Environ Chang 16:759–775CrossRefGoogle Scholar
  53. Golubiewski NE (2006) Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecol Appl 16:555–571PubMedCrossRefGoogle Scholar
  54. Gonzalez A, Mouquet N, Loreau M (2009) Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning and ecosystem services. Oxford University Press, Oxford, pp 134–146Google Scholar
  55. Graves RA, Pearson SM, Turner MG (2017) Landscape dynamics of floral resources affect the supply of a biodiversity-dependent cultural ecosystem service. Landscape Ecol 32:415–428CrossRefGoogle Scholar
  56. Groffman PM, Cavender-Bares J, Bettez ND, Grove JM, Hall SJ, Heffernan JB, Hobbie SE, Larson KL, Morse JL, Neill C, Nelson K, O’Neil-Dunne J, Ogden L, Pataki DE, Polsky C, Chowdhury RR, Steele MK (2014) Ecological homogenization of urban USA. Front Ecol Environ 12:74–81CrossRefGoogle Scholar
  57. Haase D, Haase A, Rink D (2014) Conceptualizing the nexus between urban shrinkage and ecosystem services. Landscape Urban Plan 132:159–169CrossRefGoogle Scholar
  58. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hamilton SK (2011) Biogeochemical time lags may delay responses of streams to ecological restoration. Freshw Biol 57:43–57CrossRefGoogle Scholar
  60. Heathcote AJ, Filstrup CT, Downing JA (2013) Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts. PLoS ONE 8:e53554PubMedPubMedCentralCrossRefGoogle Scholar
  61. Helm A, Hanski I, Partel M (2005) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77Google Scholar
  62. Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29:253–268CrossRefGoogle Scholar
  63. Isbell F, Calcagno V, Hector A, Connolly J, Harpole S, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202PubMedCrossRefGoogle Scholar
  64. Isbell F, Tilman D, Polasky S, Loreau M (2014) The biodiversity-dependent ecosystem service debt. Ecol Lett 18:119–134PubMedCrossRefGoogle Scholar
  65. Jackson ST, Sax DF (2009) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160PubMedCrossRefGoogle Scholar
  66. Kara EL, Heimerl C, Killpack T, Van de Bogert MC, Yoshida H, Carpenter SR (2011) Assessing a decade of phosphorus management in the Lake Mendota, Wisconsin watershed and scenarios for enhanced phosphorus management. Aquat Sci 74:241–253CrossRefGoogle Scholar
  67. Keatley BE, Bennett EM, MacDonald GK, Taranu ZE, Gregory-Eaves I (2011) Land-use legacies are important determinants of lake eutrophication in the anthropocene. PLoS ONE 6:e15913PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kemp SF, deShazo RD, Moffitt JE, Williams DF (2000) Expanding habitat of the imported fire ant (Solenopsis invicta): a public health concern. J Allergy Clin Immunol 105:683–691PubMedCrossRefGoogle Scholar
  69. Kraft GJ, Browne BA, DeVita WM, Mechenich DJ (2007) Agricultural pollutant penetration and steady state in thick aquifers. Ground Water 46:21–50Google Scholar
  70. Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479PubMedCrossRefGoogle Scholar
  71. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314PubMedCrossRefGoogle Scholar
  72. Kuhman TR, Pearson SM, Turner MG (2011) Agricultural land-use history increases non-native plant invasion in a southern Appalachian forest a century after abandonment. Can J For Res 41:920–929CrossRefGoogle Scholar
  73. Kuhman TR, Pearson SM, Turner MG (2013) Why does land-use history facilitate non-native plant invasion? A field experiment with Celastrus orbiculatus in the southern Appalachians. Biol Invasions 15:613–626CrossRefGoogle Scholar
  74. LaMotte AE, Greene EA (2007) Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA. Environ Geol 52:1413–1421CrossRefGoogle Scholar
  75. Lathrop RC (2007) Perspectives on the eutrophication of the Yahara lakes. Lake Reserv Manage 23:345–365CrossRefGoogle Scholar
  76. Lewis DB, Kaye JP, Gries C, Kinzig AP, Redman CL (2006) Agrarian legacy in soil nutrient pools of urbanizing arid lands. Glob Chang Biol 12:703–709CrossRefGoogle Scholar
  77. Lin N, Kopp RE, Horton BP, Donnelly JP (2016) Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proc Natl Acad Sci USA 113:12071–12075PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845CrossRefGoogle Scholar
  79. Luck GW, Harrington R, Harrison PA, Kremen C, Berry PM, Bugter R, Dawson TP, de Bello F, Díaz S, Feld CK, Haslett JR, Hering D, Kontogianni A, Lavorel S, Rounsevell M, Samways MJ, Sandin L, Settele J, Sykes MT, van den Hove S, Vandewalle M, Zobel M (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59:223–235CrossRefGoogle Scholar
  80. Lunt ID, Spooner PG (2005) Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J Biogeogr 32:1859–1873CrossRefGoogle Scholar
  81. MacLeish WH (1994) The day before America, changing the nature of the continent. Houghton Mifflin, BostonGoogle Scholar
  82. Maes J, Egoh B, Willemen L, Liquete C, Vihervaara P, Schägner JP, Grizzetti B, Drakou EG, La Notte A, Zulian G, Bouraoui F, Paracchini ML, Braat L, Bidoglio G (2012) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1:31–39CrossRefGoogle Scholar
  83. Malinga R, Gordon LJ, Jewitt G, Lindborg R (2015) Mapping ecosystem services across scales and continents—a review. Ecosyst Serv 13:57–63CrossRefGoogle Scholar
  84. Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96PubMedCrossRefGoogle Scholar
  85. Mechenich D (2015) Interactive well water quality viewer 1.0. University of Wisconsin-Stevens Point, Center for Watershed Science and Education. http://www.uwsp.edu/cnr-ap/watershed/Pages/WellWaterViewer.aspx. Accessed October 2016
  86. Mitchell CE, Turner MG, Pearson SM (2002) Effects of historical land use and forest patch size on myrmecochores and ant communities. Ecol Appl 12(5):1364–1377CrossRefGoogle Scholar
  87. Mitchell MGE, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908CrossRefGoogle Scholar
  88. Mitchell MGE, Bennett EM, Gonzalez A, Lechowicz MJ, Rhemtulla JM, Cardille JA, Vanderheyden K, Poirier-Ghys G, Renard D, Delmotte S, Albert CH, Rayfield B, Dumitru M, Huang H, Larouche M, Liss KN, Maguire DY, Martins KT, Terrado M, Ziter C, Taliana L, Dancose K (2015a) The Monteregie connection: linking landscapes, biodiversity, and ecosystem services to improve decision making. Ecol Soc 20:15CrossRefGoogle Scholar
  89. Mitchell MGE, Suarez-Castro AF, Martinez-Harms M, Maron M, McAlpine C, Gaston KJ, Johansen K, Rhodes JR (2015b) Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol Evol 30:190–198PubMedCrossRefGoogle Scholar
  90. Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci USA 28:9495–9500CrossRefGoogle Scholar
  91. Nassauer JI, Raskin J (2014) Urban vacancy and land use legacies: a frontier for urban ecological research, design, and planning. Landscape Urban Plan 125:245–253CrossRefGoogle Scholar
  92. National Park Service. Guidelines for the treatment of cultural landscapes: defining landscape terminology. https://www.nps.gov/tps/standards/four-treatments/landscape-guidelines/terminology.htm. Accessed April 2017
  93. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11CrossRefGoogle Scholar
  94. NOAA (2014) State of the coast. Communities: The U.S. population living at the coast. http://stateofthecoast.noaa.gov/population/welcome.html. Accessed October 2016
  95. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Evol 32:333–365CrossRefGoogle Scholar
  96. Pearson SM, Smith AB, Turner MG (1998) Forest fragmentation, land use, and cove-forest herbs in the French Broad River Basin. Castanea 63:382–395Google Scholar
  97. Pereira HM, Daily GC, Roughgarden J (2004) A framework for assessing the relative vulnerability of species to land-use change. Ecol Appl 14:730–742CrossRefGoogle Scholar
  98. Peterson GD, Beard TD Jr, Beisner BE, Bennett EM, Carpenter SR, Cumming GS, Dent CL, Haylicek TD (2003) Assessing future ecosystem services: a case study of the Northern Highlands Lake District. Wisconsin. Conserv Ecol 7:1CrossRefGoogle Scholar
  99. Plieninger T, Schaich H, Kizos T (2010) Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean. Reg Environ Change 11:603–615CrossRefGoogle Scholar
  100. Plieninger T, van der Horst D, Schleyer C, Bieling C (2014) Sustaining ecosystem services in cultural landscapes. Ecol Soc 19:art59CrossRefGoogle Scholar
  101. Poff N (1996) A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshw Biol 36:71–91CrossRefGoogle Scholar
  102. Polasky S, Nelson E, Pennington D (2011) The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the State of Minnesota. Environ Resour Econ 48:219–242CrossRefGoogle Scholar
  103. Qiu J, Turner MG (2013) Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc Natl Acad Sci USA 110:12149–12154PubMedPubMedCentralCrossRefGoogle Scholar
  104. Qiu J, Turner MG (2015) Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 6:art229CrossRefGoogle Scholar
  105. Raciti SM, Groffman PM, Jenkins JC, Pouyat RV, Fahey TJ, Pickett STA, Cadenasso ML (2011) Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems 14:287–297CrossRefGoogle Scholar
  106. Radeloff VC, Nelson E, Plantinga AJ, Lewis DJ, Helmers D, Lawler JJ, Withey JC, Beaudry F, Martinuzzi S, Butsic V, Lonsdorf E, White D, Polasky S (2012) Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol Appl 22:1036–1049PubMedCrossRefGoogle Scholar
  107. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci USA 107:5242–5247PubMedPubMedCentralCrossRefGoogle Scholar
  108. Renard D, Rhemtulla JM, Bennett EM (2015) Historical dynamics in ecosystem service bundles. Proc Natl Acad Sci USA 112:13411–13416PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46:6453–6454PubMedCrossRefGoogle Scholar
  110. Rose KC, Greb SR, Diebel M, Turner MG (2017) Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecol Appl 27:632–643PubMedCrossRefGoogle Scholar
  111. Saad DA (2008) Agriculture-related trends in groundwater quality of the glacial deposits aquifer, Central Wisconsin. J Environ Qual 37:S-209CrossRefGoogle Scholar
  112. Schaich H, Bieling C, Plieninger T (2010) Linking ecosystem services with cultural landscape research. GAIA 19:269–277CrossRefGoogle Scholar
  113. Schoellhamer DH, Mumley TE, Leatherbarrow JE (2007) Suspended sediment and sediment-associated contaminants in San Francisco Bay. Environ Res 105:119–131PubMedCrossRefGoogle Scholar
  114. Schulp CJE, Burkhard B, Maes J, Vliet JV, Verburg PH (2014) Uncertainties in ecosystem service maps: a comparison on the European scale. PLoS ONE 9:e109643PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308PubMedCrossRefGoogle Scholar
  116. Southworth GR, Peterson MJ, Roy WK, Mathews TJ (2011) Monitoring fish contaminant responses to abatement actions: factors that affect recovery. Environ Manage 47:1064–1076PubMedCrossRefGoogle Scholar
  117. Stuhler JD, Orrock JL (2016) Historical land use and present-day canopy thinning differentially affect the distribution and abundance of invasive and native ant species. Biol Invasions 18:1813–1825CrossRefGoogle Scholar
  118. Sutherland IJ, Bennett EM, Gergel SE (2016) Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. Forest Ecol Manag 374:61–70CrossRefGoogle Scholar
  119. Tesoriero AJ, Voss FD (1997) Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: implications for aquifer susceptibility and vulnerability. Ground Water 35:1029–1039CrossRefGoogle Scholar
  120. The Cultural Landscape Foundation. Vernacular landscapes. https://tclf.org/places/learn-what-are-cultural-landscapes/vernacular-landscapes. Accessed April 2017
  121. Theobald DM (2005) Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol Soc 10:32CrossRefGoogle Scholar
  122. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  123. Tomer MD, Burkart MR (2003) Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds. J Environ Qual 32:2158–2171PubMedCrossRefGoogle Scholar
  124. Tomscha SA, Gergel SE (2016) Ecosystem service trade-offs and synergies misunderstood without landscape history. Ecol Soc 21:art43CrossRefGoogle Scholar
  125. Tomscha SA, Sutherland IJ, Renard D, Gergel SE, Rhemtulla JM, Bennett EM, Daniels LD, Eddy IMS, Clark EE (2016) A Guide to historical data sets for reconstructing ecosystem service change over time. Bioscience 66:747–762CrossRefGoogle Scholar
  126. Turner MG, Carpenter SR, Gustafson EJ, Naiman RJ, Pearson SM (1998) Land use. In: Mac MJ, Opler PA, Doran P, Haecker C (eds) Status and trends of our nation’s biological resources, vol 1. National Biological Service, Washington, pp 37–61Google Scholar
  127. US Environmental Protection Agency (1996) Environmental indicators of water quality in the United States. EPA-841-r-96-002:24. US EPA, Office of Water, Washington DCGoogle Scholar
  128. Usinowicz J, Qiu J, Kamarainen A (2017) Flashiness and flooding of two lakes in the Upper Midwest during a century of urbanization and climate change. Ecosystems 20:601–615CrossRefGoogle Scholar
  129. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, Obeso JR, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R (2014) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307CrossRefGoogle Scholar
  130. Walker BH, Carpenter SR, Rockstrom J, Crépin A-S, Peterson GD (2012) Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol Soc 17:30Google Scholar
  131. Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut 131:323–336PubMedCrossRefGoogle Scholar
  132. Watson SJ, Luck GW, Spooner PG, Watson DM (2014) Land-use change: incorporating the frequency, sequence, time span, and magnitude of changes into ecological research. Front Ecol Environ 12:241–249CrossRefGoogle Scholar
  133. Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch E, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Woelz J, Wycisk P, Zennegg M (2008) Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges. Environ Sci Pollut Res 15:363–393CrossRefGoogle Scholar
  134. Whitney GG (1994) From coastal wilderness to fruited plain: a history of environmental change in temperate North America 1500 to the present. Cambridge University Press, New YorkGoogle Scholar
  135. Wisconsin Initiative on Climate Change Impacts (2011) Wisconsin’s changing climate: impacts and adaptation. Nelson Institute for Environmental Studies, University of Wisconsin-Madison, and Wisconsin Department of Natural Resources. www.wicci.wisc.edu. Accessed Oct 2016

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Carly Ziter
    • 1
  • Rose A. Graves
    • 1
  • Monica G. Turner
    • 1
  1. 1.Department of ZoologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations