Landscape Ecology

, Volume 32, Issue 9, pp 1805–1818 | Cite as

Environmental drivers of community diversity in a neotropical urban landscape: a multi-scale analysis

  • Stanislas Talaga
  • Frédéric Petitclerc
  • Jean-François Carrias
  • Olivier Dézerald
  • Céline Leroy
  • Régis Céréghino
  • Alain Dejean
Research Article

Abstract

Context

Many aquatic communities are linked by the aerial dispersal of multiple, interacting species and are thus structured by processes occurring in both the aquatic and terrestrial compartments of the ecosystem.

Objectives

To evaluate the environmental factors shaping the aquatic macroinvertebrate communities associated with tank bromeliads in an urban landscape.

Methods

Thirty-two bromeliads were georeferenced to assess the spatial distribution of the aquatic meta-habitat in one city. The relative influence of the aquatic and terrestrial habitats on the structure of macroinvertebrate communities was analyzed at four spatial scales (radius = 10, 30, 50, and 70 m) using redundancy analyses.

Results

We sorted 18,352 aquatic macroinvertebrates into 29 taxa. Water volume and the amount of organic matter explained a significant part of the taxa variance, regardless of spatial scale. The remaining variance was explained by the meta-habitat size (i.e., the water volume for all of the bromeliads within a given surface area), the distance to the nearest building at small scales, and the surface area of buildings plus ground cover at larger scales. At small scales, the meta-habitat size influenced the two most frequent mosquito species in opposite ways, suggesting spatial competition and coexistence. Greater vegetation cover favored the presence of a top predator.

Conclusions

The size of the meta-habitat and urban landscape characteristics influence the structure of aquatic communities in tank bromeliads, including mosquito larval abundance. Modifications to this landscape will affect both the terrestrial and aquatic compartments of the urban ecosystem, offering prospects for mosquito management during urban planning.

Keywords

Aquatic metacommunity Landscape ecology Mosquitoes Neotropics Scale dependency Tank bromeliads Urban ecology 

Notes

Acknowledgments

We are grateful to Andrea Yockey-Dejean for proofreading the manuscript, the Laboratoire Environnement de Petit Saut for furnishing logistical assistance, and the municipality of Sinnamary (through the Department of the Environment) for permitting us to work inside the city limits. We also acknowledge Elise Bayle for her help in developing the GIS. Financial support was provided by the French Agence Nationale de la Recherche through an ‘‘Investissement d’Avenir’’ grant (CEBA, ref. ANR-10-LABX-25-01). ST and OD were each funded by a PhD fellowship (Université Antilles-Guyane for ST; French Centre National de la Recherche Scientifique and the Fond Social Européen for OD).

Supplementary material

10980_2017_542_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 kb)

References

  1. Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122CrossRefGoogle Scholar
  2. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island”. Int J Climatol 23:1–26CrossRefGoogle Scholar
  3. Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Brouard O, Céréghino R, Leroy C, Pelozuelo L, Dejean A, Corbara B, Carrias JF (2012) Understory environments influence functional diversity in tank-bromeliad ecosystems. Freshwat Biol 57:815–823CrossRefGoogle Scholar
  5. Brown BL, Swan CM, Auerbach DA, Campbell Grant EH, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystem. J North Amer Benthol Soc 30:310–327CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, HeidelbergGoogle Scholar
  7. Chadee DD, Corbet PS, Greenwood JJD (1990) Egg-laying yellow fever mosquitoes avoid sites containing eggs laid by themselves or by conspecifics. Entomol Exp Appl 57:295–298CrossRefGoogle Scholar
  8. Clements AN (1992) The biology of mosquitoes: development, nutrition and reproduction, vol 1. CABI Publishing, LondonGoogle Scholar
  9. Dézerald O, Leroy C, Corbara B, Dejean A, Talaga S, Céréghino R (2017) Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshwater Biol. doi: 10.1111/fwb.12862 Google Scholar
  10. Dézerald O, Talaga S, Leroy C, Carrias JF, Corbara B, Dejean A, Céréghino R (2014) Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia 723:77–86CrossRefGoogle Scholar
  11. Ellis AM (2008) Linking movement and oviposition behaviour to spatial population distribution in the tree hole mosquito Ochlerotatus triseriatus. J Anim Ecol 77:156–166CrossRefPubMedGoogle Scholar
  12. Frank JH, Lounibos LP (2009) Insects and allies associated with bromeliads: a review. Terr Arthropod Rev 1:125–153CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gilbert B, Srivastava DS, Kirby KR (2008) Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117:944–950CrossRefGoogle Scholar
  14. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DP (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272CrossRefGoogle Scholar
  15. Hammill E, Atwood TB, Corvalan P, Srivastava DS (2008) Behavioural responses to predation may explain shifts in community structure. Freshwat Biol 60:125–135CrossRefGoogle Scholar
  16. Hammill E, Atwood TB, Srivastava DS (2015) Predation threat alters composition and functioning of bromeliad ecosystems. Ecosystems 18:857–866CrossRefGoogle Scholar
  17. Huang J, Miller JR, Chen SC, Vulule JM, Walker ED (2006) Anopheles gambiae (Diptera: culicidae) oviposition in response to agarose media and cultured bacterial volatiles. J Med Entomol 43:498–504CrossRefPubMedGoogle Scholar
  18. Jocque M, Kernahan A, Nobes A, Willians C, Field R (2010) How effective are non-destructive sampling methods to assess aquatic invertebrate diversity in bromeliads? Hydrobiologia 649:293–300CrossRefGoogle Scholar
  19. Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an ‘urban exploiter’? J Biogeogr 34:638–651CrossRefGoogle Scholar
  20. Kiflawi M, Blaustein L, Mangel M (2003) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol Entomol 28:168–173CrossRefGoogle Scholar
  21. Kitching RL (2000) Food webs and container habitats: the natural history and ecology of phytotelmata. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Krawchuk MA, Taylor PD (2003) Changing importance of habitat structure across multiple spatial scales for three species of insects. Oikos 103:153–161CrossRefGoogle Scholar
  23. Lane J (1953) Neotropical Culicidae, vol 1, 2. Universidade de São Paulo, São PauloGoogle Scholar
  24. LeCraw RM, Srivastava DS, Romero GQ (2014) Metacommunity size influences aquatic community composition in a natural mesocosm landscape. Oikos 123:903–911CrossRefGoogle Scholar
  25. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multiscale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  26. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  27. Leroy C, Carrias JF, Céréghino R, Corbara B (2015) The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. J Plant Ecol 9:241–255CrossRefGoogle Scholar
  28. Leroy C, Corbara B, Dejean A, Céréghino R (2009) Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. New Phytol 183:1124–1133CrossRefPubMedGoogle Scholar
  29. Lounibos LP, O’meara GF, Nishimura N (2003) Interactions with native mosquito larvae regulate the production of Aedes albopictus from bromeliads in Florida. Ecol Entomol 28:551–558CrossRefGoogle Scholar
  30. Lowe EC, Wilder SM, Hochuli DF (2015) Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter? Urban Ecosyst 19:705–720CrossRefGoogle Scholar
  31. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  32. Merritt RW, Cummins KW (2008) An introduction to the aquatic insects of North America. Kendall Hunt Publishing Company, DubuqueGoogle Scholar
  33. Mocellin MG, Simões TC, do Nascimento TFS, Teixeira MLF, Lounibos LP, Lourenço de Oliveira R (2009) Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Mem Inst Oswaldo Cruz 104:1171–1176CrossRefPubMedPubMedCentralGoogle Scholar
  34. Navarro DMAF, De Oliveira PES, Potting RPJ, Brito AC, Fital SJF, Sant’Ana AE (2003) The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae). J Appl Entomol 127:46–50CrossRefGoogle Scholar
  35. Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50CrossRefPubMedGoogle Scholar
  36. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 4:439–473CrossRefGoogle Scholar
  37. Ponnusamy L, Wesson DM, Arellano C, Schal C, Apperson CS (2010) Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microb Ecol 59:158–173CrossRefPubMedGoogle Scholar
  38. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  39. Richardson BA (1999) The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica 31:321–336CrossRefGoogle Scholar
  40. Talaga S, Delabie JHC, Dézerald O, Salas-Lopez A, Petitclerc F, Leroy C, Hérault B, Céréghino R, Dejean A (2015a) A bromeliad species reveals invasive ant presence in urban areas of French Guiana. Ecol Indic 58:1–7CrossRefGoogle Scholar
  41. Talaga S, Leroy C, Céréghino R, Dejean A (2016) Convergent evolution of intraguild predation in phytotelm-inhabiting mosquitoes. Evol Ecol 30:1133–1147CrossRefGoogle Scholar
  42. Talaga S, Murienne J, Dejean A, Leroy C (2015b) Online database for mosquito (Diptera, Culicidae) occurrence records in French Guiana. ZooKeys 532:107–115CrossRefGoogle Scholar
  43. QGIS Development Team (2015) QGIS Geographic Information System. Open Source Geospatial Foundation Project. URL http://qgis.osgeo.org/
  44. Trzcinski M, Srivastava D, Corbara B, Dézerald O, Leroy C, Carrias JF, Dejean A, Céréghino R (2016) The effects of food-web structure on ecosystem function exceeds those of precipitation. J Anim Ecol 85:1147–1160CrossRefPubMedGoogle Scholar
  45. Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93CrossRefGoogle Scholar
  46. Yanoviak SP (2001) Container color and location affect macroinvertebrate community structure in artificial treeholes in Panama. Florida Entomol 84:265–271CrossRefGoogle Scholar
  47. Yee DA, Yee SH (2007) Nestedness patterns of container-dwelling mosquitoes: effects of larval habitat within variable terrestrial matrices. Hydrobiologia 592:373–385CrossRefGoogle Scholar
  48. Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Stanislas Talaga
    • 1
  • Frédéric Petitclerc
    • 2
  • Jean-François Carrias
    • 3
    • 4
  • Olivier Dézerald
    • 5
  • Céline Leroy
    • 6
  • Régis Céréghino
    • 5
  • Alain Dejean
    • 5
  1. 1.Institut Pasteur de la Guyane, Unité d’Entomologie MédicaleCayenne CedexFrance
  2. 2.CNRS; UMR EcoFoG, AgroParisTech, Cirad, CNRS, INRA, Université des Antilles, Université de GuyaneKourouFrance
  3. 3.Université Clermont Auvergne; Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement (LMGE)Clermont-FerrandFrance
  4. 4.CNRS; UMR LMGE, Université Blaise PascalAubière CedexFrance
  5. 5.Ecolab, Université de Toulouse, CNRS, INP, UPS, UPS-ECOLABToulouseFrance
  6. 6.IRD; UMR AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations)Montpellier Cedex 5France

Personalised recommendations