Landscape Ecology

, Volume 32, Issue 8, pp 1671–1687 | Cite as

How does forest fragmentation affect tree communities? A critical case study in the biodiversity hotspot of New Caledonia

  • Thomas Ibanez
  • Vanessa Hequet
  • Céline Chambrey
  • Tanguy Jaffré
  • Philippe Birnbaum
Research Article



The biodiversity hotspot for conservation of New Caledonia has facing high levels of forest fragmentation. Remnant forests are critical for biodiversity conservation and can help in understanding how does forest fragmentation affect tree communities.


Determine the effect of habitat configuration and availability on tree communities.


We mapped forest in a 60 km2 landscape and sampled 93 tree communities in 52 forest fragments following stratified random sampling. At each sampling point, we inventoried all trees with a diameter at breast height ≥10 cm within a radius of 10 m. We then analysed the response of the composition, the structure and the richness of tree communities to the fragment size and isolation, distance from the edge, as well as the topographical position.


Our results showed that the distance from the forest edge was the variable that explained the greatest observed variance in tree assemblages. We observed a decrease in the abundance and richness of animal-dispersed trees as well as a decrease in the abundance of large trees with increasing proximity to forest edges. Near forest edges we found a shift in species composition with a dominance of stress-tolerant pioneer species.


Edge-effects are likely to be the main processes that affect remnant forest tree communities after about a century of forest fragmentation. It results in retrogressive successions at the edges leading to a dominance of stress-tolerant species. The vegetation surrounding fragments should be protected to promote the long process of forest extension and subsequently reduce edge-effects.


Dispersal mode Edge-effect Fragment size Landscape Habitat loss Topographic position 



This work was funded by CNRT (French National Centre for Technological Research) “Nickel and its environment” [CSF N°02CNRT.IAC/Corifor]. We are most grateful to Valentine Birnbaum, Elodie Blanchard, Thomas Boutreux and Elias Ganivet for assistance in the field and to Gendrilla Warimavute, Juliane Kaoh for assistance in determining the dispersal mode. We also thank Stéphane Mccoy for logistic assistance and Jacqueline Fambart-Tinel as well as all the team at the Nouméa herbarium (NOU) for technical support. We are also grateful to three anonymous reviewers for their comments that helped to greatly improve the manuscript.

Supplementary material

10980_2017_534_MOESM1_ESM.pdf (294 kb)
Supplementary material 1 (PDF 293 kb)


  1. Alencar AA, Brando PM, Asner GP, Putz FE (2015) Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol Appl 25(6):1493–1505CrossRefPubMedGoogle Scholar
  2. Aubréville A, Leroy J-F, MacKee HS, Morat P (1967-present) Flore de la Nouvelle-Calédonie et Dépendances. Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  3. Banks-Leite C, Ewers RM, Metzger J-P (2010) Edge effects as the principal cause of area effects on birds in fragmented secondary forest. Oikos 119(6):918–926CrossRefGoogle Scholar
  4. Bartoń K (ed) (2016) {MuMIn}: multi-model inference, {R} package version 1.15.6Google Scholar
  5. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):48Google Scholar
  6. Benchimol M, Peres CA (2015) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. J Ecol 103(2):408–420CrossRefGoogle Scholar
  7. Benitez-Malvido J (1998) Impact of forest fragmentation on seedling abundance in a tropical rain forest. Conserv Biol 12(2):380–389CrossRefGoogle Scholar
  8. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24(3):127–135CrossRefPubMedGoogle Scholar
  9. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Natl Acad Sci 111(17):6347–6352CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brinck K, Fischer R, Groeneveld J, Lehmann S, Dantas De Paula M, Pütz S, Sexton JO, Song D, Huth A (2017) High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat Commun 8:14855CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, PortlandGoogle Scholar
  12. Carpenter RJ, Read J, Jaffre T (2003) Reproductive traits of tropical rain-forest trees in New Caledonia. J Trop Ecol 19:351–365CrossRefGoogle Scholar
  13. Curt T, Borgniet L, Ibanez T, Moron V, Hély C (2015) Understanding fire patterns and fire drivers for setting a sustainable management policy of the New-Caledonian biodiversity hotspot. For Ecol Manage 337:48–60CrossRefGoogle Scholar
  14. Demenois J, Ibanez T, Read J, Carriconde F (2017) Comparison of two monodominant species in New Caledonia: floristic diversity and ecological strategies of Arillastrum gummiferum (Myrtaceae) and Nothofagus aequilateralis (Nothofagaceae) rainforests. Aust J Bot 65(1):11–21CrossRefGoogle Scholar
  15. Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121(2):161–170CrossRefGoogle Scholar
  16. Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31(1):17–30Google Scholar
  17. Dorner B, Lertzman K, Fall J (2002) Landscape pattern in topographically complex landscapes: issues and techniques for analysis. Landscape Ecol 17(8):729–743CrossRefGoogle Scholar
  18. Ewers RM, Andrade A, Laurance SG, Camargo JL, Lovejoy TE, Laurance WF (2017) Predicted trajectories of tree community change in Amazonian rainforest fragments. Ecography 40(1):26–35CrossRefGoogle Scholar
  19. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81(1):117–142CrossRefPubMedGoogle Scholar
  20. Ewers RM, Laurance WF (2006) Scale-dependent patterns of deforestation in the Brazilian Amazon. Environ Conserv 33(3):203–211CrossRefGoogle Scholar
  21. Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactionsbetween edge and areaeffects in a heavily fragmented landscape. Ecology 88(1):96–106CrossRefPubMedGoogle Scholar
  22. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  23. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663CrossRefGoogle Scholar
  24. Fletcher RJ (2005) Multiple edge effects and their implications in fragmented landscapes. J Anim Ecol 74(2):342–352CrossRefGoogle Scholar
  25. Fletcher RJ, Ries L, Battin J, Chalfoun AD (2007) The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can J Zool 85(10):1017–1030CrossRefGoogle Scholar
  26. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2)Google Scholar
  27. Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):768–782CrossRefGoogle Scholar
  28. Helm A, Hanski I, Partel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9(1):72–77PubMedGoogle Scholar
  29. Ibanez T, Birnbaum P (2014) Monodominance at the rainforest edge: case study of Codia mackeeana (Cunoniaceae) in New Caledonia. Aust J Bot 62(4):312–321Google Scholar
  30. Ibanez T, Borgniet L, Mangeas M, Gaucherel C, Géraux H, Hély C (2013) Rainforest and savanna landscape dynamics in New Caledonia: towards a mosaic of stable rainforest and savanna states? Austral Ecol 38(1):33–45CrossRefGoogle Scholar
  31. Isnard S, L’Huillier L, Rigault F, Jaffre T (2016) How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant Soil 403(1–2):53–76CrossRefGoogle Scholar
  32. Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Calédonie. Paris Sud-OrsayGoogle Scholar
  33. Jaffré T, Bouchet P, Veillon JM (1998) Threatened plants of New Caledonia: is the system of protected areas adequate? Biodivers Conserv 7(1):109–135CrossRefGoogle Scholar
  34. Jaffré T, L’Huillier L (2010a) Conditions de milieu des terrains miniers. In: L’Huillier L, Jaffré T, Wulff A (eds) Mines et environement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC, Nouméa, pp 33–44Google Scholar
  35. Jaffré T, L’Huillier L (2010b) La végétation des roches ultramafiques ou terrains minier. In: L’Huillier L, Jaffré T, Wulff A (eds) Mines et environnement en Nouvelle-Calédonie: les milieux et substrats ultramafiques et leur restauration. IAC, Nouméa, pp 45–103Google Scholar
  36. Jaffré T, Rigault F, Dagostini G, Tinel-Fambart J, Wulff A, Munzinger J (2009) Input of the different vegetation units to the richness and endemicity of the New Caledonian flora. In: Pacific science intercongress, TahitiGoogle Scholar
  37. Jesus FM, Pivello VR, Meirelles ST, Franco G, Metzger JP (2012) The importance of landscape structure for seed dispersal in rain forest fragments. J Veg Sci 23(6):1126–1136CrossRefGoogle Scholar
  38. Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83(4):495–508PubMedGoogle Scholar
  39. Kolk J, Naaf T (2015) Herb layer extinction debt in highly fragmented temperate forests - Completely paid after 160 years? Biol Conserv 182:164–172CrossRefGoogle Scholar
  40. Kupfer JA, Malanson GP, Franklin SB (2006) Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob Ecol Biogeogr 15(1):8–20CrossRefGoogle Scholar
  41. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Ockinger E, Partel M, Pino J, Roda F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24(10):564–571CrossRefPubMedGoogle Scholar
  42. Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744CrossRefGoogle Scholar
  43. Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Conservation: rainforest fragmentation kills big trees. Nature 404(6780):836CrossRefPubMedGoogle Scholar
  44. Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, Ribeiro JEL, Capretz RL (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87(2):469–482CrossRefPubMedGoogle Scholar
  45. L’Huillier L, Jaffré T (2010) L’exploitation des minerais de nickel en Nouvelle-Calédonie. In: L’Huillier L, Jaffré T, Wulff A (eds) Mines et environement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC, Nouméa, pp 21–31Google Scholar
  46. Lôbo D, Leão T, Melo FPL, Santos AMM, Tabarelli M (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers Distrib 17(2):287–296CrossRefGoogle Scholar
  47. MacArthur RH, Wilson EO (1967) The theory of island biogeograpy. Princeton University Press, PrincetonGoogle Scholar
  48. Magnago LFS, Edwards DP, Edwards FA, Magrach A, Martins SV, Laurance WF (2014) Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J Ecol 102(2):475–485CrossRefGoogle Scholar
  49. Malcolm JR (1994) Edge effects in central Amazonian forest fragments. Ecology 75(8):2438–2445CrossRefGoogle Scholar
  50. Malcolm JR, Valenta K, Lehman SM (2017) Edge effects in tropical dry forests of Madagascar: additivity or synergy? Landscape Ecol 32(2):327–341CrossRefGoogle Scholar
  51. McCoy S, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramafic maquis of New Caledonia. J Biogeogr 26(3):579–594CrossRefGoogle Scholar
  52. Mendes G, Arroyo-Rodríguez V, Almeida WR, Pinto SRR, Pillar VD, Tabarelli M (2016) Plant trait distribution and the spatial reorganization of tree assemblages in a fragmented tropical forest landscape. Plant Ecol 217(1):31–42CrossRefGoogle Scholar
  53. Mesquita RCG, Delamônica P, Laurance WF (1999) Effect of surrounding vegetation on edge-related tree mortality in Amazonian forest fragments. Biol Conserv 91(2–3):129–134CrossRefGoogle Scholar
  54. Metzger JP (2000) Tree functional group richness and landscape structure in a Brazilian tropical fragmented landscape. Ecol Appl 10(4):1147–1161CrossRefGoogle Scholar
  55. Mittermeier RA, Robles Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoureux J, da Fonseca GAB (2004) Hotspots Revisted. Chicago University Press, ChicagoGoogle Scholar
  56. Morat P, Jaffre T, Tronchet F, Munzinger J, Pillon Y, Veillon JM, Chalopin M, Birnbaum P, Rigault F, Dagostini G, Tinel J, Li PP (2012) The taxonomic reference base "Florical" and characteristics of the native vascular flora of New Caledonia. Adansonia 34(2):179–221CrossRefGoogle Scholar
  57. Murcia C (1995) Edge effects in fragmented forests—implications for consevation. Trends Ecol Evol 10(2):58–62CrossRefPubMedGoogle Scholar
  58. Murphy HT, Lovett-Doust J (2004) Context and connectivity in plant metapopulations and landscape mosaics: does the matrix matter? Oikos 105(1):3–14CrossRefGoogle Scholar
  59. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142CrossRefGoogle Scholar
  60. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology PackageGoogle Scholar
  61. Oliveira MA, Santos AMM, Tabarelli M (2008) Profound impoverishment of the large-tree stand in a hyper-fragmented landscape of the Atlantic forest. For Ecol Manage 256(11):1910–1917CrossRefGoogle Scholar
  62. Orihuela RLL, Peres CA, Mendes G, Jarenkow JA, Tabarelli M (2015) Markedly divergent tree assemblage responses to tropical forest loss and fragmentation across a strong seasonality gradient. PLoS ONE 10(8):e0136018CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pascal M, Richer de Forges BR, Le Guyader H, Simberloff D (2008) Mining and other threats to the New Caledonia biodiversity hotspot. Conserv Biol 22(2):498–499CrossRefPubMedGoogle Scholar
  64. Perry GLW, Enright NJ (2002) Humans, fire and landscape pattern: understanding a maquis-forest complex, Mont Do, New Caledonia, using a spatial ‘state-and-transition’ model. J Biogeogr 29(9):1143–1158CrossRefGoogle Scholar
  65. Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19(5):1205–1223CrossRefGoogle Scholar
  66. Proctor J, Lee YF, Langley AM, Munro WRC, Nelson T (1988) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sagah, Malaysia. I. Environements, forest structure and floristics. J Ecol 76(2):320–340CrossRefGoogle Scholar
  67. Richer de Forges B, Pascal M (2008) La Nouvelle-Calédonie, un “point chaud” de la biodiversité mondiale gravement menacé par l’exploitation minière. J de la Société des Océanistes 126–127:95–112CrossRefGoogle Scholar
  68. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158(1):87–99CrossRefPubMedGoogle Scholar
  69. Santos BA, Peres CA, Oliveira MA, Grillo A, Alves-Costa CP, Tabarelli M (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141(1):249–260CrossRefGoogle Scholar
  70. Tabarelli M, Lopes AV, Peres CA (2008) Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40(6):657–661CrossRefGoogle Scholar
  71. Team RC (2012) R: a language and environment for statistical computing, 2.15.2 edn, Vienna, AustriaGoogle Scholar
  72. Turner MG (1989) Landscape ecology: the effect of pattern and process. Annu Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  73. Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33(2):200–209CrossRefGoogle Scholar
  74. van der Ent A, Jaffre T, L’Huillier L, Gibson N, Reeves RD (2015) The flora of ultramafic soils in the Australia-Pacific Region: state of knowledge and research priorities. Aust J Bot 63(3–4):173–190Google Scholar
  75. Vellend M, Verheyen K, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Hermy M (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87(3):542–548CrossRefPubMedGoogle Scholar
  76. Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology. The Science of Scarcity and Diversity, Sinauer, pp 237–256Google Scholar
  77. Wilson MC, Chen X-Y, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu J, Pimm SL, Robinson SK, Russo SE, Si X, Wilcove DS, Wu J, Yu M (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecol 31(2):219–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institut Agronomique néo-Calédonien (IAC), Equipe Sol & Végétation (SolVeg), BPA5NouméaNew Caledonia
  2. 2.IRD, UMR AMAP, BP A5NouméaNew Caledonia
  3. 3.CIRAD, UMR AMAPMontpellierFrance

Personalised recommendations