Landscape Ecology

, Volume 32, Issue 3, pp 581–593 | Cite as

Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation

  • Alexandra D. Papanikolaou
  • Ingolf Kühn
  • Mark Frenzel
  • Oliver Schweiger
Research Article

Abstract

Context

The abundance of important providers of ecosystem services such as wild bees likely increases with landscape heterogeneity, but may also fluctuate across the flowering season following varying weather conditions.

Objectives

In the present study, we investigated the combined effect of landscape heterogeneity and intra-annual variability in temperature and precipitation on the spatial and temporal stability of wild bee abundance.

Methods

We used bee monitoring data from six 4 km × 4 km sites in central Germany and 16 local communities per site. The data were collected six times per year from 2010 to 2013. Following a multimodel inference approach, we identified the importance of landscape heterogeneity, weather variability and their interaction to the stability of wild bee abundance.

Results

We found that the stability of wild bee abundance increased with landscape heterogeneity, but decreased with increasing intra-annual variability in both temperature and precipitation. However, our key finding was a buffering mechanism enabling high abundance stability in heterogeneous landscapes even under highly variable temperature conditions. Interestingly, the same mechanism did not apply for high variability in precipitation.

Conclusions

Our findings suggest that increasing landscape heterogeneity is beneficial for protecting wild bees against the projected increase in temperature variability until the end of the twenty first century, although we cannot make inferences for extreme events such as heatwaves. Nevertheless, our results equally highlight that landscape heterogeneity should not be treated as a one-size-fits-all solution and the need remains for developing alternative strategies to mitigate the effect of increasing variability in precipitation.

Keywords

Climate change Ecosystem service Landscape heterogeneity Landscape management Mitigation Spatiotemporal stability Weather variability Wild bee abundance 

Supplementary material

10980_2016_471_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1117 kb)

References

  1. Aguirre-Gutiérrez J, Biesmeijer JC, van Loon EE, Reemer M, WallisDeVries MF, Carvalheiro LG (2015) Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Divers Distrib 21(10):1129–1140CrossRefGoogle Scholar
  2. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18(20):1572–1575CrossRefPubMedGoogle Scholar
  3. Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013a) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci USA 110(12):4656–4660CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bartomeus I, Park MG, Gibbs J, Danforth BN, Lakso AN, Winfree R (2013b) Biodiversity ensures plant-pollinator phenological synchrony against climate change. Ecol Lett 16(11):1331–1338CrossRefPubMedGoogle Scholar
  5. Barton K (2015) MuMIn: multi-model inference. R package version 1.12.1. http://CRAN.R-project.org/package=MuMIn
  6. Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-9. https://CRAN.R-project.org/package=lme4
  7. Biesmeijer JC, Roberts SP, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354CrossRefPubMedGoogle Scholar
  8. Blüthgen N, Klein A-M (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12(4):282–291CrossRefGoogle Scholar
  9. Burkle LA, Runyon JB (2016) Drought and leaf herbivory influence floral volatiles and pollinator attraction. Glob Change Biol 22(4):1644–1654CrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer, BerlinGoogle Scholar
  11. Carroll AB, Pallardy SG, Galen C (2001) Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). Am J Bot 88(3):438–446CrossRefPubMedGoogle Scholar
  12. Chaplin-Kramer R, Dombeck E, Gerber J, Knuth KA, Mueller ND, Mueller M, Ziv G, Klein AM (2014) Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc R Soc Lond B 267:1149–1152Google Scholar
  13. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46Google Scholar
  14. Eilers EJ, Kremen C, Smith Greenleaf S, Garber AK, Klein A-M (2011) Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE 6(6):e21363CrossRefPubMedPubMedCentralGoogle Scholar
  15. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins WJ, Cox P, Driouech F, Emori S, Eyring V, Forest C (2013) Evaluation of Climate Models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Doschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  16. Frenzel M, Everaars J, Schweiger O (2015) Bird communities in agricultural landscapes: what are the current drivers of temporal trends? Ecol Indic 65:113–121CrossRefGoogle Scholar
  17. Frenzel M, Preiser C, Creutzburg F (2016a) Wild bee monitoring in six agriculturally dominated landscapes of Saxony-Anhalt (Germany) in 2010. Helmholtz Centre for Environmental Research UFZ, Leipzig. doi:10.1594/PANGAEA.864790 Google Scholar
  18. Frenzel M, Preiser C, Dussl F, Höhne R, Nickels V, Creutzburg F (2016b) Wild bee monitoring in six agriculturally dominated landscapes of Saxony-Anhalt (Germany) in 2013. Helmholtz Centre for Environmental Research UFZ, Leipzig. doi:10.1594/PANGAEA.865097 Google Scholar
  19. Frenzel M, Preiser C, Höhne R, Nickels V, Creutzburg F (2016c) Wild bee monitoring in six agriculturally dominated landscapes of Saxony-Anhalt (Germany) in 2012. Helmholtz Centre for Environmental Research UFZ, Leipzig. doi:10.1594/PANGAEA.865038 Google Scholar
  20. Frenzel M, Preiser C, Nickels V, Creutzburg F (2016d) Wild bee monitoring in six agriculturally dominated landscapes of Saxony-Anhalt (Germany) in 2011. Helmholtz Centre for Environmental Research UFZ, Leipzig. doi:10.1594/PANGAEA.864907 Google Scholar
  21. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3):810–821CrossRefGoogle Scholar
  22. Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK, Klein AM, Krauss J, Maier G, Scherber C (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568CrossRefPubMedPubMedCentralGoogle Scholar
  23. Garibaldi LA, Aizen MA, Klein AM, Cunningham SA, Harder LD (2011a) Global growth and stability of agricultural yield decrease with pollinator dependence. Proc Natl Acad Sci USA 108(14):5909–5914CrossRefPubMedPubMedCentralGoogle Scholar
  24. Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhoeffer JH, Greenleaf SS, Holzschuh A (2011b) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14(10):1062–1072CrossRefPubMedGoogle Scholar
  25. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611CrossRefPubMedGoogle Scholar
  26. Gillespie S, Long R, Williams N (2015) Indirect effects of field management on pollination service and seed set in hybrid onion seed production. J Econ Entomol 108(6):2511–2517CrossRefPubMedGoogle Scholar
  27. González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyörgyi H, Woyciechowski M, Vilà M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28(9):524–530CrossRefPubMedGoogle Scholar
  28. Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21(1):27–58CrossRefGoogle Scholar
  29. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Tilman D (2011) Plant diversity and the stability of foodwebs. Ecol Lett 14(1):42–46CrossRefPubMedGoogle Scholar
  30. Halpern SL, Adler LS, Wink M (2010) Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia 163(4):961–971CrossRefPubMedGoogle Scholar
  31. Horn HS (1966) Measurement of overlap in comparative ecological studies. Am Nat 100(914):419–424CrossRefGoogle Scholar
  32. Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85(5):1383–1398CrossRefGoogle Scholar
  33. Isbell FI, Polley HW, Wilsey BJ (2009) Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12(5):443–451CrossRefPubMedGoogle Scholar
  34. Jha S, Burkle L, Kremen C (2013) Vulnerability of pollination ecosystem services. Climate vulnerability: Understanding and addressing threats to essential resources. pp. 117–128Google Scholar
  35. Johnson PC (2014) Extension of Nakagawa & Schielzeth’s to random slopes models. Methods Ecol Evol 5(9):944–946CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL (2015) Climate change impacts on bumblebees converge across continents. Science 349(6244):177–180CrossRefPubMedGoogle Scholar
  37. Kindvall O (1996) Habitat heterogeneity and survival in bush cricket metapopulation. Ecology 77(1):207–214CrossRefGoogle Scholar
  38. Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein AM, Kremen C, M’gonigle LK, Rader R, Ricketts TH (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414CrossRefPubMedPubMedCentralGoogle Scholar
  39. Klein A-M (2009) Nearby rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. For Ecol Manag 258(9):1838–1845CrossRefGoogle Scholar
  40. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274(1608):303–313CrossRefPubMedGoogle Scholar
  41. Kudo G, Harder LD (2005) Floral and inflorescence effects on variation in pollen removal and seed production among six legume species. Funct Ecol 19(2):245–254CrossRefGoogle Scholar
  42. Kühsel S, Blüthgen N (2015) High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat Commun 6:7989CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lehman CL, Tilman D (2000) Biodiversity, stability, and productivity in competitive communities. Am Nat 156(5):534–552CrossRefGoogle Scholar
  44. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620CrossRefPubMedGoogle Scholar
  45. Mallinger RE, Gratton C, Diekötter T (2015) Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J Appl Ecol 52(2):323–330CrossRefGoogle Scholar
  46. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–33CrossRefPubMedGoogle Scholar
  47. Müller F, Baessler C, Schubert H, Klotz S (2010) Long-term ecological research: between theory and application. Springer, DordrechtCrossRefGoogle Scholar
  48. Nakagawa S, Schielzeth H, O’Hara RB (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142CrossRefGoogle Scholar
  49. Oliver TH, Brereton T, Roy DB (2013) Population resilience to an extreme drought is influenced by habitat area and fragmentation in the local landscape. Ecography 36(5):579–586CrossRefGoogle Scholar
  50. Oliver TH, Marshall HH, Morecroft MD, Brereton T, Prudhomme C, Huntingford C (2015) Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat Clim Change 5:941–945CrossRefGoogle Scholar
  51. Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev 5(3):317–335Google Scholar
  52. Oliver T, Roy DB, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13(4):473–484CrossRefPubMedGoogle Scholar
  53. Pacini E, Nepi M, Vasprini JL (2003) Nectar biodiversity: a short review. Plant Syst Evol 238:7–21CrossRefGoogle Scholar
  54. Petanidou T, Smets E (1996) Does temperature stress induce nectar secretion in Mediterranean plants? New Phytol 133:513–518CrossRefGoogle Scholar
  55. Piessens K, Adriaens D, Jacquemyn H, Honnay O (2009) Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore. Oecologia 159(1):117–126CrossRefPubMedGoogle Scholar
  56. Powney GD, Roy DB, Chapman D, Oliver TH (2010) Synchrony of butterfly populations across species’ geographic ranges. Oikos 119(10):1690–1696CrossRefGoogle Scholar
  57. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  59. Rader R, Birkhofer K, Schmucki R, Smith HG, Stjernman M, Lindborg R (2014) Organic farming and heterogeneous landscapes positively affect different measures of plant diversity. J Appl Ecol 51(6):1544–1553CrossRefGoogle Scholar
  60. Reyer CP, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Abou Jaoudé R, Klein T (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Change Biol 19(1):75–89CrossRefGoogle Scholar
  61. Ricketts TH, Daily GC, Ehrlich PR, Michener CD (2004) Economic value of tropical forest to coffee production. Proc Natl Acad Sci USA 101(34):12579–12582CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rummukainen M (2012) Changes in climate and weather extremes in the 21st century. Wiley Interdiscip Rev 3(2):115–129Google Scholar
  63. Rundlöf M, Nilsson H, Smith HG (2008) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141(2):417–426CrossRefGoogle Scholar
  64. Scaven VL, Rafferty NE (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59(3):418–426CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kühn I, Moora M, Nielsen A, Ohlemüller R, Petanidou T (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85(4):777–795PubMedGoogle Scholar
  66. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 109–230Google Scholar
  67. Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64CrossRefGoogle Scholar
  68. Straka J, Černá K, Macháčková L, Zemenová M, Keil P, Ayasse M (2014) Life span in the wild: the role of activity and climate in natural populations of bees. Funct Ecol 28(5):1235–1244CrossRefGoogle Scholar
  69. Takkis K, Tscheulin T, Tsalkatis P, Petanidou T (2015) Climate change reduces nectar secretion in two common Mediterranean plants. AoB Plants. doi:10.1093/aobpla/plv111 PubMedPubMedCentralGoogle Scholar
  70. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108(50):20260–20264CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tilman D, Reich PB, Knops JM (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441(7093):629–632CrossRefPubMedGoogle Scholar
  72. Tuell JK, Isaacs R (2010) Weather during bloom affects pollination and yield of highbush blueberry. J Econ Entomol 103(3):557–562CrossRefPubMedGoogle Scholar
  73. Valone TJ, Barber NA (2008) An empirical evaluation of the insurance hypothesis in diversity stability models. Ecology 89(2):522–531CrossRefPubMedGoogle Scholar
  74. Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CD, McCann KS, Savage V, Tunney TD, O’Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B 281(1179):2013–2612Google Scholar
  75. Westphal C, Steffan-Dewenter I, Tscharntke T (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. J Appl Ecol 46(1):187–193CrossRefGoogle Scholar
  76. Willmer PG, Stone GN (2004) Behavioral, ecological, and physiological determinants of the activity patterns of bees. Adv Study Behav 34:347–466CrossRefGoogle Scholar
  77. Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18(7):626–635CrossRefPubMedGoogle Scholar
  78. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz T, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10(3):955CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalleGermany
  2. 2.Institute of Biology/Geobotany and Botanical GardenMartin-Luther-University Halle-WittenbergHalleGermany
  3. 3.German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations