Advertisement

Landscape Ecology

, Volume 32, Issue 2, pp 377–395 | Cite as

Using operating area size and adjacency constraints to mitigate the effects of harvesting activities on boreal caribou habitat

  • Guillaume Cyr
  • Frédéric Raulier
  • Daniel Fortin
  • David PothierEmail author
Research Article

Abstract

Context

Sustained timber harvesting conflicts with the long-term viability of boreal caribou (Rangifer tarandus caribou) populations. The spatial arrangement of harvest blocks in the landscape could mitigate the impact of logging on caribou populations. For the forest industry, however, these measures represent constraints that reduce the annual allowable cut (AAC).

Objective

Estimate the long-term impacts of spatial constraints to harvesting, applied alone or in combination, on AAC and boreal caribou populations.

Methods

We divided a 30,000 km2 region into 20 harvest block sizes varying from 50 to 1000 km2, and modeled the implementation of spatially explicit harvest schedule plans in combination with wildfire and caribou population dynamics. We then evaluated the probability of persistence of boreal caribou populations.

Results

The probability of maintaining an AAC target declined with increasing target AAC, increasing size of operating area, and increasing adjacency constraints. In contrast, the probability of maintaining caribou populations declined with increasing AAC, decreasing size of operating areas, and decreasing adjacency constraints. An increase in operating area size from 50 to 300 km2 produced a considerable gain in AAC for all adjacency constraints.

Conclusions

Because adjacency constraints led only to a small increase in the probability of maintaining caribou populations, we recommend adopting less constraining landscape management actions, such as a 70-year period between two consecutive harvests in the same ~300-km2 operating area.

Keywords

Caribou population dynamics Landscape dynamics Harvesting scenarios Annual allowable cut Timber supply optimization Landscape disturbance 

Notes

Acknowledgements

We thank the NSERC-Laval University Industrial Research Chair in Silviculture and Wildlife for providing financial support for this Project. We are grateful to François Lévesque and Marc Bédard (Resolute Forest Products), and Jacques Duval (Ministère des Forêts, de la Faune et des Parcs du Québec) for their help in defining many assumptions that were used in the harvest simulations, to Mathieu Bouchard (Ministère des Forêts, de la Faune et des Parcs du Québec) for providing the fire history map, and to Hakim Ouzennou for drawing Fig. 1. We also thank William F. J. Parsons (Centre d’étude de la forêt), Robert Scheller and two anonymous reviewers for their valuable comments and suggestions on the manuscript.

References

  1. Baskent EZ, Keles S (2005) Spatial forest planning: a review. Ecol Model 188:145–173CrossRefGoogle Scholar
  2. Belleau A, Bergeron Y, Leduc A, Gauthier S, Fall A (2007) Using spatially explicit simulations to explore size distribution and spacing of regenerating areas produced by wildfires: recommendations for designing harvest agglomerations for the Canadian boreal forest. For Chron 83:73–83CrossRefGoogle Scholar
  3. Bergeron Y, Cyr D, Girardin MP, Carcaillet C (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. Int J Wildland Fire 19:1127–1139CrossRefGoogle Scholar
  4. Bergeron Y, Gauthier S, Flannigan M, Kafka V (2004) Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 85:1916–1932CrossRefGoogle Scholar
  5. Bergeron Y, Leduc A, Harvey B, Gauthier S (2002) Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silva Fenn 36:81–95CrossRefGoogle Scholar
  6. Berteaux D (2013) Québec’s large-scale Plan Nord. Conserv Biol 27:242–247CrossRefPubMedGoogle Scholar
  7. Bichet O, Dupuch A, Hebert C, Le Borgne H, Fortin D (2016) Maintaining animal assemblages through single-species management: the case of threatened caribou in boreal forest. Ecol Appl 26:612–623CrossRefPubMedGoogle Scholar
  8. Bouchard M, Garet J (2014) A framework to optimize the restoration and retention of large mature forest tracts in managed boreal landscapes. Ecol Appl 24:1689–1704CrossRefGoogle Scholar
  9. Bouchard M, Pothier D (2008) Simulations of the effects of changes in mean fire return intervals on balsam fir abundance, and implications for spruce budworm outbreaks. Ecol Model 218:107–218CrossRefGoogle Scholar
  10. Bouchard M, Pothier D (2011) Long-term influence of fire and harvesting on boreal forest age structure and forest composition in eastern Québec. For Ecol Manag 261:811–820CrossRefGoogle Scholar
  11. Bouchard M, Pothier D, Gauthier S (2008) Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Can J For Res 38:1621–1633CrossRefGoogle Scholar
  12. Brandt JP (2009) The extent of the North American boreal zone. Environ Rev 17:101–161CrossRefGoogle Scholar
  13. Brodeur V, Ouellet JP, Courtois R, Fortin D (2008) Habitat selection by black bears in an intensively logged boreal forest. Can J Zool 86:1307–1316CrossRefGoogle Scholar
  14. Brown GS, Rettie WJ, Brooks RJ, Mallory FF (2007) Predicting the impacts of forest management on woodland caribou habitat suitability in black spruce boreal forest. For Ecol Manag 245:137–147CrossRefGoogle Scholar
  15. Caners RT, Macdonald SE, Belland RJ (2013) Linking the biological traits of boreal bryophytes to forest habitat change after partial harvesting. For Ecol Manag 303:184–194CrossRefGoogle Scholar
  16. Cimon-Morin J, Darveau M, Poulin M (2016) Consequences of delaying conservation of ecosystem services in remote landscapes prone to natural resource exploitation. Landscape Ecol 31:825–842CrossRefGoogle Scholar
  17. Cimon-Morin J, Ruel JC, Darveau M (2010) Short-term effects of alternative silvicultural treatments on stand attributes in irregular balsam fir–black spruce stands. For Ecol Manag 260:907–914CrossRefGoogle Scholar
  18. Côté P, Tittler R, Messier C, Kneeshaw DD, Fall A, Fortin MJ (2010) Comparing different forest zoning options for landscape-scale management of the boreal forest: possible benefits of the TRIAD. For Ecol Manag 259:418–427CrossRefGoogle Scholar
  19. Courbin N, Fortin D, Dussault C, Courtois R (2009) Habitat management for woodland caribou: the protection of forest blocks influences wolf–caribou interactions. Landscape Ecol 24:1375–1388CrossRefGoogle Scholar
  20. Courbin N, Fortin D, Dussault C, Courtois R (2014) Logging-induced changes in habitat network connectivity shape behavioral interactions in the wolf–caribou–moose system. Ecol Monogr 84:265–285CrossRefGoogle Scholar
  21. Courbin N, Fortin D, Dussault C, Fargeot V, Courtois R (2013) Multi-trophic resource selection function enlightens the behavioural game between wolves and their prey. J Anim Ecol 82:1062–1071CrossRefPubMedGoogle Scholar
  22. Courtois R, Gingras A, Fortin D, Sebbane A, Rochette B, Breton L (2008) Demographic and behavioural response of woodland caribou to forest harvesting. Can J For Res 38:2837–2849CrossRefGoogle Scholar
  23. Courtois R, Ouellet JP, Breton L, Gingras A, Dussault C (2007) Effects of forest disturbance on density, space use, and mortality of woodland caribou. Écoscience 14:491–498CrossRefGoogle Scholar
  24. Courtois R, Ouellet JP, Dussault C, Gingras A (2004) Forest management guidelines for forest-dwelling caribou in Québec. For Chron 80:598–607CrossRefGoogle Scholar
  25. Cyr G (2014) Optimisation de la récolte de bois dans un contexte de protection de l’habitat du caribou forestier. MSc Thesis, Université Laval, QuébecGoogle Scholar
  26. D’Orangeville L, Duchesne L, Houle D, Kneeshaw D, Côté B, Pederson N (2016) Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352:1452–1455CrossRefPubMedGoogle Scholar
  27. De Grandpré L, Gauthier S, Allain C, Cyr D, Périgon S, Pham AT, Boucher D, Morissette J, Reyes G, Aakala T, Kuuluvainen T (2008) Vers un aménagement écosystémique de la forêt boréale de la Côte-Nord. In: Aménagement écosystémique en forêt boréale. Chapitre 10, Presse de l’Université du Québec, Québec, CanadaGoogle Scholar
  28. Dhital N, Raulier F, Asselin H, Imbeau L, Valeria O, Bergeron Y (2013) Emulating boreal forest disturbance dynamics: Can we maintain timber supply, aboriginal land use, and woodland caribou habitat? For Chron 89:54–65CrossRefGoogle Scholar
  29. Dussault C, Pinard V, Ouellet JP, Courtois C, Fortin D (2012) Avoidance of roads and selection for recent cutovers by threatened caribou: fitness-rewarding or maladaptive behaviour? Proc R Soc Lond Biol 279:4481–4488CrossRefGoogle Scholar
  30. Ecological Stratification Working Group (1995) A national ecological framework for Canada. Agriculture and Agri-Food Canada and Environment Canada Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, Ottawa/Hull. http://sis.agr.gc.ca/cansis/publications/manuals/1996/A42-65-1996-national-ecological-framework.pdf. Accessed June 2016
  31. Environnement Canada (2011) Évaluation scientifique aux fins de la désignation de l’habitat essentiel de la population boréale du caribou des bois (Rangifer tarandus caribou) au Canada. Mise à jour 2011. 116 p. et annexesGoogle Scholar
  32. Environment Canada (2012) Recovery strategy for the woodland caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at risk act recovery strategy series. Environment Canada, OttawaGoogle Scholar
  33. Faille G, Dussault C, Ouellet JP, Fortin D, Courtois R, St-Laurent MH, Dussault C (2010) Range fidelity: the missing link between caribou decline and habitat alteration? Biol Conserv 143:840–2850CrossRefGoogle Scholar
  34. Fall A, Fall J (2001) A domain-specific language for models of landscape dynamics. Ecol Model 141:1–18CrossRefGoogle Scholar
  35. Fall A, Fortin MJ, Kneeshaw DD, Yamasaki SH, Messier C, Bouthillier L, Smyth C (2004) Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests. Can J For Res 34:310–322CrossRefGoogle Scholar
  36. Fortin D, Buono PL, Fortin A, Courbin N, Tye Gingras C, Moorcroft PR, Courtois R, Dussault C (2013) Movement responses of caribou to human-induced habitat edges lead to their aggregation near anthropogenic features. Am Nat 181:827–836CrossRefPubMedGoogle Scholar
  37. Fortin D, Buono PL, Schmitz OJ, Courbin N, Losier C, St-Laurent MH, Drapeau P, Heppell S, Dussault C, Brodeur V, Mainguy J (2015) A spatial theory for characterizing predator–multiprey interactions in heterogeneous landscapes. Proc R Soc Lond Biol 282:1812CrossRefGoogle Scholar
  38. Fortin D, Courtois R, Etcheverry P, Dussault C, Gingras A (2008) Winter selection of landscapes by woodland caribou: behavioural response to geographical gradients in habitat attributes. J Appl Ecol 45:1392–1400CrossRefGoogle Scholar
  39. Garet J, Raulier F, Pothier D, Cumming SG (2012) Forest age class structures as indicators of sustainability in boreal forest: Are we measuring them correctly? Ecol Indic 23:202–210CrossRefGoogle Scholar
  40. Gauthier S, Raulier F, Ouzennou H, Saucier JP (2015) Strategic analysis of forest vulnerability to risk related to fire: an example from the coniferous boreal forest of Quebec. Can J For Res 45:553–565CrossRefGoogle Scholar
  41. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz S, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agentbased models. Ecol Model 198:115–126Google Scholar
  42. Hervieux D, Edmonds J, Bonar R, McCammon J (1996) Successful and unsuccessful attempts to resolve caribou management and timber harvesting issues in west central Alberta. Rangifer 9(Spec. Issue):185–190CrossRefGoogle Scholar
  43. Hins C, Ouellet JP, Dussault C, St-Laurent MH (2009) Habitat selection by forest-dwelling caribou in managed boreal forest of eastern Canada: evidence of a landscape configuration effect. For Ecol Manag 257:636–643CrossRefGoogle Scholar
  44. Houle M, Fortin D, Dussault C, Courtois R, Ouellet JP (2010) Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape Ecol 25:419–433CrossRefGoogle Scholar
  45. Imbeau L, St-Laurent MH, Marzell L, Brodeur V (2015) Current capacity to conduct ecologically sustainable forest management in northeastern Canada reveals challenges for conservation of biodiversity. Can J For Res 45:567–578CrossRefGoogle Scholar
  46. James PMA, Fortin MJ, Fall A, Kneeshaw DD, Messier C (2007) The effects of spatial legacies following shifting management practices and fire on boreal forest age structure. Ecosystems 10:1261–1277CrossRefGoogle Scholar
  47. James PMA, Fortin MJ, Sturtevant BR, Fall A, Kneeshaw DD (2011) Modelling spatial interactions among fire spruce budworm and logging in the boreal forest. Ecosystems 14:60–75CrossRefGoogle Scholar
  48. Johnson EA (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge studies in ecology. Cambridge University Press, CambridgeGoogle Scholar
  49. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 4598:671–680CrossRefGoogle Scholar
  50. Larson MA, Thompson FR III, Millspaugh JJ, Dijak WD, Shifley SR (2004) Linking population viability, habitat suitability, and landscape simulation models for conservation planning. Ecol Model 180:103–118CrossRefGoogle Scholar
  51. Lesmerises R, Ouellet JP, Dussault C, St-Laurent MH (2013) The influence of landscape matrix on isolated patch use by wide-ranging animals: conservation lessons for woodland caribou. Ecol Evol 3:2880–2891CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131:433–445CrossRefGoogle Scholar
  53. Losier CL, Couturier S, St-Laurent MH, Drapeau P, Dussault C, Rudolph T, Brodeur V, Merkle JA, Fortin D (2015) Adjustments in habitat selection to changing availability induce fitness costs for a threatened ungulate. J Appl Ecol 52:496–504CrossRefGoogle Scholar
  54. Maxwell SL, Fuller RA, Brooks TM, Watson JEM (2016) The ravages of guns, nets and bulldozers. Nature 536:143–145CrossRefPubMedGoogle Scholar
  55. Messier F (1994) Ungulate population models with predation: a case study with the North American moose. Ecology 75:478–488CrossRefGoogle Scholar
  56. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1088–1092CrossRefGoogle Scholar
  57. Moreau G, Fortin D, Couturier S, Duchesne T (2012) Multi-level functional responses for wildlife conservation: the case of threatened caribou in managed boreal forests. J Appl Ecol 49:611–620CrossRefGoogle Scholar
  58. Parisien MA, Parks SA, Krawchuk MA, Flannigan MD, Bowman LM, Moritz MA (2011) Scale-dependent controls on the area burned in the boreal forest of Canada, 1980–2005. Ecol Appl 21:789–805CrossRefPubMedGoogle Scholar
  59. Paz Acuña M, Estades CF (2011) Plantation clearcut size and the persistence of early-successional wildlife populations. Biol Conserv 144:1577–1584CrossRefGoogle Scholar
  60. Pinard V, Dussault C, Ouellet JP, Fortin D, Courtois R (2012) Calving rate, calf survival rate, and habitat selection of forest-dwelling caribou in a highly managed landscape. J Wildl Manag 76:189–199CrossRefGoogle Scholar
  61. Pothier D, Savard F (1998) Actualisation des tables de production pour les principales espèces forestières du Québec. Gouvernement du Québec, Ministère des Ressources naturellesGoogle Scholar
  62. Price JM, Silbernagel J, Nixon K, Swearingen A, Swaty R, Miller N (2016) Collaborative scenario modeling reveals potential advantages of blending strategies to achieve conservation goals in a working forest landscape. Landscape Ecol 31:1093–1115CrossRefGoogle Scholar
  63. Raulier F, Dhital N, Racine P, Tittler R, Fall A (2014) Increasing resilience of timber supply: how a variable buffer stock of timber can efficiently reduce exposure to shortfalls caused by wildfires. For Policy Econ 46:47–55CrossRefGoogle Scholar
  64. Raulier F, Ouzennou H, Saucier JP, Bergeron Y, Campagna M, Lord D (2013) Productivité: description du critère et de l’indicateur, justification des seuils, méthode retenue et résultats détaillés. In: Rapport du Comité scientifique chargé d’examiner la limite nordique des forêts attribuables. Ministère des Ressources naturelles du Québec, Secteur des forêts, Annexe 6, chapitre 4, pp 79–103Google Scholar
  65. Rempel RS, Baker J, Elkie PC, Gluck MJ, Jackson J, Kushneriuk RS, Moore T, Perera AH (2007) Forest policy scenario analysis: sensitivity of songbird community to changes in forest cover amount and configuration. Avian Conserv Ecol 2:5CrossRefGoogle Scholar
  66. Rempel RS, Kaufmann CK (2003) Spatial modeling of harvest constraints on wood supply versus wildlife habitat objectives. Environ Manag 32:646–659CrossRefGoogle Scholar
  67. Robitaille A, Saucier JP (1998) Paysages régionaux du Québec méridional. Les publications du Québec, QuébecGoogle Scholar
  68. Schaefer JA (2003) Long-term range recession and the persistence of caribou in the taiga. Conserv Biol 17:1435–1439CrossRefGoogle Scholar
  69. Schruben LW (1979) Chapter 16: designing correlation induction strategies for simulation experiments. In: Adam NR, Dogramaci A (eds) Current issues in computer simulation. Academic press, New YorkGoogle Scholar
  70. Seip DR (1992) Factors limiting woodland caribou populations and their interrelationships with wolves and moose in southeastern British Columbia. Can J Zool 70:494–1503CrossRefGoogle Scholar
  71. Simard M, Lecomte N, Bergeron Y, Bernier P, Paré D (2009) Ecosystem management of Québec’s northern Clay Belt spruce forest: managing the forest… and especially the soils. In: Gauthier S, Vaillancourt MA, Leduc A, De Grandpré L, Kneeshaw D, Morin H, Drapeau P, Bergeron Y, Dogramaci A (eds) Ecosystem management in the boreal forest. Presses de l’Université du Québec, Québec, pp 229–256Google Scholar
  72. Smith KG, Ficht EJ, Hobson D, Sorenson TC, Hervieux D (2000) Winter distribution of woodland distribution of woodland caribou in relation to clear-cut logging in west-central Alberta. Can J Zool 78:1433–1440CrossRefGoogle Scholar
  73. Steen OA, Waterhouse MJ, Armleder HM, Daintith NM (2007) Natural regeneration of lodgepole pine following partial harvesting on northern caribou winter range in west-central British Columbia. BC J Ecosyst Manag 8:61–74Google Scholar
  74. Thomas DC, Gray DR (2002) Update COSEWIC status report on the woodland caribou Rangifer tarandus caribou in Canada. In: COSEWIC assessment and update status report on the woodland caribou Rangifer tarandus caribou in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, pp 1–98Google Scholar
  75. Thorpe HC, Thomas SC (2007) Partial harvesting in the Canadian boreal: success will depend on stand dynamic responses. For Chron 83:319–325CrossRefGoogle Scholar
  76. Tittler R, Messier C, Fall A (2012) Concentrating anthropogenic disturbance to balance ecological and economic values: applications to forest management. Ecol Appl 22:1268–1277CrossRefPubMedGoogle Scholar
  77. Villard MA, Jonsson BG (2009) A plea for quantitative targets in biodiversity conservation. In: Villard MA, Jonsson BG (eds) Setting conservation targets for managed forest landscapes (no. 16). Cambridge University Press, Cambridge, pp 1–8Google Scholar
  78. Whittington J, Hebblewhite M, DeCesare NJ, Neufeld L, Bradley M, Wilmshurst J, Musiani M (2011) Caribou encounters with wolves increase near roads and trails: a time-to-event approach. J Appl Ecol 48:1535–1542CrossRefGoogle Scholar
  79. Wittmer HU, Serrouya R, Elbroch LM, Marshall AJ (2013) Conservation strategies for species affected by apparent competition. Conserv Biol 27:254–260CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Centre d’Étude de la Forêt, Département des Sciences du bois et de la forêt, Pavillon Abitibi-PriceUniversité LavalQuebecCanada
  2. 2.Centre d’Étude de la Forêt, Département de biologie, Pavillon Alexandre-VachonUniversité LavalQuebecCanada

Personalised recommendations