Landscape Ecology

, Volume 32, Issue 1, pp 163–179 | Cite as

Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians

  • Martin Mikoláš
  • Martin Tejkal
  • Tobias Kuemmerle
  • Patrick Griffiths
  • Miroslav Svoboda
  • Tomáš Hlásny
  • Pedro J. Leitão
  • Robert C. Morrissey
Research Article



Distribution and connectivity of suitable habitat for species of conservation concern is critical for effective conservation planning. Capercaillie (Tetrao urogallus), an umbrella species for biodiversity conservation, is increasingly threatened because of habitat loss and fragmentation.


We assessed the impact of drastic changes in forest management in the Carpathian Mountains, a major stronghold of capercaillie in Europe, on habitat distribution and connectivity.


We used field data surveys with a forest disturbance dataset for 1985–2010 to map habitat suitability, and we used graph theory to analyse habitat connectivity.


Climate, topography, forest proportion and fragmentation, and the distance to roads and settlements best identified capercaillie presence. Suitable habitat area was 7510 km2 in 1985; by 2010, clear-cutting had reduced that area by 1110 km2. More suitable habitat was lost inside protected areas (571 km2) than outside (413 km2). Habitat loss of 15 % reduced functional connectivity by 33 % since 1985.


Forest management, particularly large-scale clear-cutting and salvage logging, have substantially diminished and fragmented suitable capercaillie habitat, regardless of the status of forest protection. Consequently, larger areas with suitable habitat are now isolated and many patches are too small to sustain viable populations. Given that protection of capercaillie habitat would benefit many other species, including old-growth specialists and large carnivores, conservation actions to halt the loss of capercaillie habitat is urgently needed. We recommend adopting policies to protect natural forests, limiting large-scale clear-cutting and salvage logging, implementing ecological forestry, and restricting road building to reduce forest fragmentation.


Forest management Clear-cutting Carpathian Ecoregion Connectivity Forest disturbance Habitat fragmentation Habitat modelling Umbrella species 



We thank three anonymous reviewers for their constructive and helpful comments on the manuscript. This study was supported by Czech Science Foundation project (GACR 15-14840S) and Czech University of Life Sciences, Prague (CIGA No. 20154316). TK gratefully acknowledges support by the Einstein Foundation Berlin.

Supplementary material

10980_2016_433_MOESM1_ESM.doc (6 mb)
Supplementary material 1 (DOC 6102 kb)


  1. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688CrossRefGoogle Scholar
  2. Bañuelos MJ, Quevedo M, Obeso JR (2008) Habitat partitioning in endangered Cantabrian capercaillie Tetrao urogallus cantabricus. J Ornithol 149:245–252CrossRefGoogle Scholar
  3. Baumann M, Kuemmerle T, Elbakidze M, Ozdogan M, Radeloff VC, Keuler NS, Prishchepov AV, Kruhlov I, Hostert P (2011) Patterns and drivers of post-socialist farmland abandonment in western Ukraine. Land Use Policy 28:552–562CrossRefGoogle Scholar
  4. Beudert B, Bässler C, Thorn S, Noss R, Schröder B, Dieffenbach-Fries H, Foullois N, Müller J (2015) Bark beetles increase biodiversity while maintaining drinking water quality. Conserv Lett 8:272–281CrossRefGoogle Scholar
  5. Bohn U, Gollub G, Hettwer C, Weber H, Neuhäuslová Z, Raus T, Schlüter H (2004) Karte der natürlichen Vegetation Europas [Map of the natural vegetation of Europe]. Landwirtschaftsverlag, MünsterGoogle Scholar
  6. Bollmann K, Graf RF, Suter W (2011) Quantitative predictions for patch occupancy of capercaillie in fragmented habitats. Ecography 34:276–286CrossRefGoogle Scholar
  7. Bollmann K, Müller J (2012) Naturwaldreservate: welche, wo und wofür? (Essay). Schweiz Z Forstw 163:187–198CrossRefGoogle Scholar
  8. Bollmann K, Weibel P, Graf RF (2005) An analysis of central Alpine capercaillie spring habitat at the forest stand scale. For Ecol Manag 215:307–318CrossRefGoogle Scholar
  9. Böttcher H, Verkerk PJ, Gusti M, Havlík P, Grassi G (2012) Projection of the future EU forest CO2 sink as affected by recent bioenergy policies using two advanced forest management models. GCB Bioenergy 4:773–783CrossRefGoogle Scholar
  10. Bouriaud L (2005) Causes of illegal logging in Central and Eastern Europe. Small Scale For Econ Manag Policy 4:269–292Google Scholar
  11. Braunisch V, Suchant R (2007) A model for evaluating the ‘habitat potential’ of a landscape for capercaillie Tetrao urogallus: a tool for conservation planning. Wildl Biol 13:21–33CrossRefGoogle Scholar
  12. Braunisch V, Suchant R (2008) Using ecological forest site mapping for long-term habitat suitability assessments in wildlife conservation—demonstrated for capercaillie (Tetrao urogallus). For Ecol Manag 256:1209–1221CrossRefGoogle Scholar
  13. Braunisch V, Suchant R (2013) The capercaillie Tetrao urogallus action plan in the black forest: an integrative concept for the conservation of a viable population. Vogelwelt 134:29–41Google Scholar
  14. Braunisch V, Coppes J, Arlettaz R, Suchant R, Zellweger F, Bollmann K (2014) Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity. PLoS One 9:e97718PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951CrossRefGoogle Scholar
  16. Broome A, Connolly T, Quine CP (2014) An evaluation of thinning to improve habitat for capercaillie (Tetrao urogallus). For Ecol Manag 314:94–103CrossRefGoogle Scholar
  17. CERI (2001) The status of the Carpathians WWF—Danube-Carpathian programme. Carpathian Ecoregion Initiative, ViennaGoogle Scholar
  18. Chapron G, Kaczensky P, Linnell JD, von Arx M, Huber D, Andrén H, López-Bao JV, Adamec M, Álvares F, Anders O, Balčiauskas L (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346:1517–1519PubMedCrossRefGoogle Scholar
  19. Courbin N, Daniel F, Christian D, Réhaume C (2009) Landscape management for woodland caribou: the protection of forest blocks influences wolf-caribou co-occurrence. Landscape Ecol 24:1375–1388CrossRefGoogle Scholar
  20. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, Mcclean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:027–046CrossRefGoogle Scholar
  21. Dorresteijn I, Hanspach J, Kecskés A, Latková H, Mezey Z, Sugár S, Wehrden H, Fischer J (2014) Human-carnivore coexistence in a traditional rural landscape. Landscape Ecol 29:1145–1155CrossRefGoogle Scholar
  22. Ehrbar R, Bollmann K, Mollet P (2011) Ein Sonderwaldreservat für das Auerhuhn-das Beispiel Amden (Kanton St. Gallen) [A special forest reserve for the capercaillie-the model of Amden (Canton St Gallen)]. Schweiz Z Forstw 162:11–21CrossRefGoogle Scholar
  23. Eliassen S, Wegge P (2007) Ranging behaviour of male capercaillie Tetrao urogallus outside the lekking ground in spring. J Avian Biol 38:37–43CrossRefGoogle Scholar
  24. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  25. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  26. FAO (2010) Global forest resources assessment 2010. Food and Agricultural Organization of the United Nations, RomeGoogle Scholar
  27. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9:e97122PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gjerde I, Wegge P (1989) Spacing pattern, habitat use and survival of capercaillie in a fragmented winter habitat. Ornis Scand 20:219–225CrossRefGoogle Scholar
  29. Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landscape Ecol 20:703–717CrossRefGoogle Scholar
  30. Graf RF, Kramer-Schadt S, Fernández N, Grimm V (2007) What you see is where you go? Modeling dispersal in mountainous landscapes. Landscape Ecol 22:853–866CrossRefGoogle Scholar
  31. Graf RF, Mathys L, Bollmann K (2009) Habitat assessment for forest dwelling species using LiDAR remote sensing: capercaillie in the Alps. For Ecol Manag 257:160–167CrossRefGoogle Scholar
  32. Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV, Lieskovsky J, Munteanu C, Ostapowicz K, Hostert P (2014) Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ 151:72–88CrossRefGoogle Scholar
  33. Griffiths P, Kuemmerle T, Kennedy RE, Abrudan IV, Knorn J, Hostert P (2012) Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens Environ 118:199–214CrossRefGoogle Scholar
  34. Griffiths P, Müller D, Kuemmerle T, Hostert P (2013) Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ Res Lett 8:045024CrossRefGoogle Scholar
  35. Grimm V, Storch I (2000) Minimum viable population size of capercaillie Tetrao urogallus : results from a stochastic model. Wildl Biol 6:219–225Google Scholar
  36. Grodzińska K, Godzik B, Frączek W, Badea O, Oszlányi J, Postelnicu D, Shparyk Y (2004) Vegetation of the selected forest stands and land use in the Carpathian Mountains. Environ Pollut 130:17–32PubMedCrossRefGoogle Scholar
  37. Gurung AB, Bokwa A, Chełmicki W, Elbakidze M, Hirschmugl M, Hostert P, Ibisch P, Kozak J, Kuemmerle T, Matei E, Ostapowicz K, Pociask-Karteczka J, Schmidt L, van der Linden S, Zebisch M (2009) Global change research in the Carpathian mountain region. Mt Res Dev 29:282–288CrossRefGoogle Scholar
  38. Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspective. BioScience 62:633–645CrossRefGoogle Scholar
  39. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedCrossRefGoogle Scholar
  40. Helm A (2015) Habitat restoration requires landscape-scale planning. Appl Veg Sci 18:177–178CrossRefGoogle Scholar
  41. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  42. Hjeljord O, Wegge P, Rolstad J, Ivanova M, Beshkarev AB (2000) Spring-summer movements of male capercaillie Tetrao urogallus: a test of the ‘landscape mosaic’ hypothesis. Wildl Biol 6:251–256Google Scholar
  43. Houle M, Fortin D, Dussault Ch, Courtois R, Ouellet L-P (2010) Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape Ecol 25:419–433CrossRefGoogle Scholar
  44. Irland L (2008) State failure, corruption, and warfare: challenges for forest policy. J Sustain For 27:189–223CrossRefGoogle Scholar
  45. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369CrossRefGoogle Scholar
  46. Klinga P, Mikoláš M, Zhelev P, Höglund J, Paule L (2015) Genetic differentiation of western capercaillie in the Carpathian Mountains: the importance of post glacial expansions and habitat connectivity. Biol J Linn Soc 116:873–889CrossRefGoogle Scholar
  47. Knorn J, Kuemmerle T, Radeloff VC, Keeton SW, Gancz V, Biris I, Svoboda M, Griffiths P, Hagatis A, Hostert P (2012a) Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environ Conserv 40:182–193CrossRefGoogle Scholar
  48. Knorn J, Kuemmerle T, Radeloff VC, Szabo A, Mindrescu M, Keeton WS, Abrudan I, Griffiths P, Gancz V, Hostert P (2012b) Forest restitution and protected area effectiveness in post-socialist Romania. Biol Conserv 146:204–212CrossRefGoogle Scholar
  49. Kormann U, Gugerli F, Ray N, Excoffier L, Bollmann K (2012) Parsimony-based pedigree analysis and individual-based landscape genetics suggest topography to restrict dispersal and connectivity in the endangered capercaillie. Biol Conserv 152:241–252CrossRefGoogle Scholar
  50. Křenová Z, Kindlmann P (2015) Natura 2000—solution for Eastern Europe or just a good start? The Šumava National Park as a test case. Biol Conserv 186:268–275CrossRefGoogle Scholar
  51. Kuemmerle T, Chaskovskyy O, Knorn J, Radeloff VC, Kruhlov I, Keeton WS, Hostert P (2009) Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sens Environ 113:1194–1207CrossRefGoogle Scholar
  52. Kuemmerle T, Perzanowski K, Chaskovskyy O, Ostapowicz K, Halada L, Bashta AT, Kruhlov I, Hostert P, Waller DM, Radeloff VC (2010) European bison habitat in the Carpathian mountains. Biol Conserv 143:908–916CrossRefGoogle Scholar
  53. Laita A, Kotiaho JS, Mönkkönen M (2011) Graph-theoretic connectivity measures: what do they tell us about connectivity? Landscape Ecol 26:951–967CrossRefGoogle Scholar
  54. Levers C, Verkerk PJ, Müller D, Verburg PH, Butsic V, Leitão PJ, Lindner M, Kuemmerle T (2014) Drivers of forest harvesting intensity patterns in Europe. For Ecol Manag 315:160–172CrossRefGoogle Scholar
  55. Litvaitis JA, Reed GC, Carroll RP, Litvaitis MK, Tash J, Mahard T, Broman DJA, Callahan C, Ellingwood M (2015) Bobcats (Lynx rufus) as a model organism to investigate the effects of roads on wide-ranging carnivores. Environ Manag 55:1366–1376CrossRefGoogle Scholar
  56. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  57. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789CrossRefGoogle Scholar
  58. MacMillan DC, Marshall K (2004) Optimising capercaillie habitat in commercial forestry plantations. For Ecol Manag 198:351–365CrossRefGoogle Scholar
  59. Main-Knorn M, Hostert P, Kozak J, Kuemmerle T (2009) How pollution legacies and land use histories shape post-communist forest cover trends in the Western Carpathians. For Ecol Manag 258:60–70CrossRefGoogle Scholar
  60. McNeely JA (1994) Lessons from the past: forests and biodiversity. Biodivers Conserv 3:3–20CrossRefGoogle Scholar
  61. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  62. Mikoláš M, Kalafusová I, Tejkal M, Černajová I, Zuzana M, Hlásny T, Barka I, Zrníková K, Bače R, Svoboda M (2013) Habitat conditions of the core population of the Western Capercaillie (Tetrao urogallus) in the Western Carpathians: is there still place for the species in Slovakia? Sylvia 49:79–98Google Scholar
  63. Mikoláš M, Svitok M, Tejkal M, Leitão PJ, Morrissey RC, Svoboda M, Seedre M, Fontaine JB (2015) Evaluating forest management intensity on an umbrella species: capercaillie persistence in central Europe. For Ecol Manag 354:26–34CrossRefGoogle Scholar
  64. Moning C, Müller J (2009) Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol Ind 9:922–932CrossRefGoogle Scholar
  65. Moss R, Picozzi N, Catt DC (2006) Natal dispersal of capercaillie Tetrao urogallus in northeast Scotland. Wildl Biol 12:227–232CrossRefGoogle Scholar
  66. Paillet Y, Bergès L, Hjältén J, Ódor P, Avon C, Bernhardt-römermann M, Bijlsma RJ, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Mészáros I, Sebastià MT, Schmidt W, Standovár T, Tóthmérész B, Uotila A, Valladares F, Vellak K, Virtanen R (2010) Compromises in data selection in a meta-analysis of biodiversity in managed and unmanaged forests: response to Halme et al. Conserv Biol 24:1157–1160PubMedCrossRefGoogle Scholar
  67. Pakkala T, Pellikka J, Lindén H (2003) Capercaillie Tetrao urogallus—a good candidate for an umbrella species in taiga forests. Wildl Biol 4:309–316Google Scholar
  68. Pascual-Hortal L, Saura S (2008) Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur J For Res 127:23–31CrossRefGoogle Scholar
  69. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245CrossRefGoogle Scholar
  70. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  71. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  72. Quevedo M, Bañuelos MJ, Obeso JR (2006) The decline of Cantabrian capercaillie: how much does habitat configuration matter? Biol Conserv 127:190–200CrossRefGoogle Scholar
  73. Riley SJ, Gloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Int J Sci 5:1–4Google Scholar
  74. Rolstad J, Wegge P (1987) Distribution and size of capercaillie leks in relation to old forest fragmentation. Oecologia 72:389–394CrossRefGoogle Scholar
  75. Rösner S, Mussard-Forster E, Lorenc T, Müller J (2014) Recreation shapes a “landscape of fear” for a threatened forest bird species in Central Europe. Landscape Ecol 29:55–66CrossRefGoogle Scholar
  76. Saniga M (2002) Habitat features of the capercaillie (Tetrao urogallus) leks in the West Carpathians. J For Sci 48:415–424Google Scholar
  77. Saniga M (2003) Ecology of the capercaillie (Tetrao urogallus) and forest management in relation to its protection in the West Carpathians. J For Sci 49:229–239Google Scholar
  78. Sappington J, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wildl Manag 71:1419–1426CrossRefGoogle Scholar
  79. Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11:407–416CrossRefGoogle Scholar
  80. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103CrossRefGoogle Scholar
  81. Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139CrossRefGoogle Scholar
  82. Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780PubMedCrossRefGoogle Scholar
  83. Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, Ulyshen MD, Müller J (2015) Experimental studies of dead-wood biodiversity—a review identifying global gaps in knowledge. Biol Conserv 191:139–149CrossRefGoogle Scholar
  84. Selva N, Kreft S, Kati V, Schluck M, Jonsson BG, Mihok B, Okarma H, Ibisch PL (2011) Roadless and low-traffic areas as conservation targets in Europe. J Environ Manag 48:865–877CrossRefGoogle Scholar
  85. Simpson M, Prots B (2012) Predicting the distribution of invasive plants in the Ukrainian Carpathians under climatic change and intensification of anthropogenic disturbances: implications for biodiversity conservation. Environ Conserv 40:1–15Google Scholar
  86. Soille P, Vogt P (2008) Morphological segmentation of binary patterns. Pattern Recogn Lett 30:456–459CrossRefGoogle Scholar
  87. Storch I (1993) Habitat selection by capercaillie in summer and autumn: is bilberry important? Oecologia 95:257–265CrossRefGoogle Scholar
  88. Storch I (1995) Habitat requirements of capercaillie. Proc Int Symp Grouse 6:151–154Google Scholar
  89. Storch I (2000) Conservation status and threats to grouse worldwide: an overview. Wildl Biol 6:195–204Google Scholar
  90. Storch I (2002) On spatial resolution in habitat models: can small-scale forest structure explain capercaillie numbers ? Conserv Ecol 6:6CrossRefGoogle Scholar
  91. Storch I (2007) Conservation status of grouse worldwide: an update. Wildl Biol 13:5–12CrossRefGoogle Scholar
  92. Storch I, Leidenberger C (2003) Tourism, mountain huts and distribution of corvids in the Bavarian Alps, Germany. Wildl Biol 9:301–308Google Scholar
  93. Storch I, Segelbacher G (2000) Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T. tetrix: a project in progress. Wildl Biol 6:305–310Google Scholar
  94. Suter W, Graf RF, Hesst R (2002) Capercaillie (Tetrao urogallus) and avian biodiversity: testing the umbrella-species concept. Conserv Biol 16:778–788CrossRefGoogle Scholar
  95. Svoboda M, Janda P, Bače R, Fraver S, Nagel TA, Rejzek J, Mikoláš M, Douda J, Boublík K, Šamonil P, Čada V, Trotsiuk V, Teodosiu M, Bouriaud O, Biriş AI, Sýkora O, Uzel P, Zelenka J, Sedlák V, Lehejček J (2014) Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J Veg Sci 25:386–401CrossRefGoogle Scholar
  96. Teuscher M, Brandl R, Förster B, Hothorn T, Rösner S, Müller J (2013) Forest inventories are a valuable data source for habitat modelling of forest species: an alternative to remote-sensing data. Forestry 86:241–253CrossRefGoogle Scholar
  97. Thiel D, Jenni-Eiermann S, Palme R, Jenni L (2011) Winter tourism increases stress hormone levels in the Capercaillie Tetrao urogallus. Ibis 153:122–133CrossRefGoogle Scholar
  98. Trombulak S, Frissell C (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30CrossRefGoogle Scholar
  99. Trotsiuk V, Svoboda M, Janda P, Mikolas M, Bace R, Rejzek J, Samonil P, Chaskovskyy O, Korol M, Myklush S (2014) A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. For Ecol Manag 334:144–153CrossRefGoogle Scholar
  100. Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519CrossRefGoogle Scholar
  101. UNEP (2007) Carpathians environment outlook. United Nations Environment Programme, GenevaGoogle Scholar
  102. Vogt P (2015) GuidosToolbox (graphical user interface for the description of image objects and their shapes): digital image analysis software collection available at the following web site: Accessed 9 April 2016
  103. Wallenius T, Niskanen L, Virtanen T, Hottola J, Brumelis G, Angervuori A, Julkunen J, Pihlström M (2010) Loss of habitats, naturalness and species diversity in Eurasian forest landscapes. Ecol Indic 10:1093–1101CrossRefGoogle Scholar
  104. Walpole AA, Bowman J, Murray DL, Wilson PJ (2012) Functional connectivity of lynx at their southern range periphery in Ontario, Canada. Landscape Ecol 27:761–773CrossRefGoogle Scholar
  105. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342PubMedCrossRefGoogle Scholar
  106. Wegge P, Rolstad J (2011) Clearcutting forestry and Eurasian boreal forest grouse: long-term monitoring of sympatric capercaillie Tetrao urogallus and black grouse T. tetrix reveals unexpected effects on their population performances. For Ecol Manag 261:1520–1529CrossRefGoogle Scholar
  107. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. BioScience 48:607–615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Martin Mikoláš
    • 1
    • 2
  • Martin Tejkal
    • 3
  • Tobias Kuemmerle
    • 4
    • 5
  • Patrick Griffiths
    • 5
  • Miroslav Svoboda
    • 1
  • Tomáš Hlásny
    • 1
    • 6
  • Pedro J. Leitão
    • 5
  • Robert C. Morrissey
    • 1
    • 7
  1. 1.Faculty of Forestry and Wood SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
  2. 2.PRALESRosinaSlovakia
  3. 3.Faculty of Environmental SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
  4. 4.Integrative Research Institute on Transformation in Human-Environment Systems (IRI THESys)Humboldt-University BerlinBerlinGermany
  5. 5.Geography DepartmentHumboldt-University BerlinBerlinGermany
  6. 6.Department of Forest and Landscape EcologyNational Forest Centre – Forest Research Institute ZvolenZvolenSlovakia
  7. 7.Plant and Environmental SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations