Advertisement

Landscape Ecology

, Volume 31, Issue 10, pp 2485–2505 | Cite as

Anuran responses to spatial patterns of agricultural landscapes in Argentina

  • Romina P. SuárezEmail author
  • Maria E. Zaccagnini
  • Kimberly J. Babbitt
  • Noela C. Calamari
  • Guillermo S. Natale
  • Alexis Cerezo
  • Nadia Codugnello
  • Teresa Boca
  • Maria J. Damonte
  • Josefina Vera-Candioti
  • Gregorio I. Gavier-Pizarro
Research Article

Abstract

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.

Keywords

Amphibian conservation Agriculture expansion and intensification Entre Rios Espinal Landscape structure Habitat loss Forest connectivity Landscape heterogeneity 

Notes

Acknowledgments

This research was fully funded by INTA, through the Projects AERN 2624 and 2622. We thank to the numerous farmers that kindly granted access to their properties and Cerrito town by offering us a field station where to stay during field sampling periods. We also want to thank the valuable fieldwork assistance provided by P. Calieres and L. Castañaga as well as the advice and helpful comments provided by J. Thompson, M.J Pizarro, B. Poliserpi, Y. Sica, L. Solari, J. Decarre and A. Goijman from INTA, K. Hodara from University of Buenos Aires, D. Hocking and J. Veysey from the University of New Hampshire. We also thank Deahn Donner, Veronique St-Luis and an anonymous reviewer for valuable comments and suggestions in a previous version of the manuscript.

Supplementary material

10980_2016_426_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)
10980_2016_426_MOESM2_ESM.docx (33 kb)
Supplementary material 2 (DOCX 32 kb)
10980_2016_426_MOESM3_ESM.docx (37 kb)
Supplementary material 3 (DOCX 37 kb)

References

  1. Achaval F, Olmos A (2003) Anfibios y reptiles del Uruguay, 2nd edn. Graphis Impresora, MontevideoGoogle Scholar
  2. Aizen MA, Garibaldi LA, Dondo M (2009) Expansión de la soja y diversidad de la agricultura argentina. Ecol Austral 19(1):45–54Google Scholar
  3. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  4. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manag 64:912–923CrossRefGoogle Scholar
  5. Atauri JA, de Lucio JV (2001) The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecol 16(2):147–159CrossRefGoogle Scholar
  6. Attademo A, Lajmanovich R, Peltzer P, Cejas W (2005) Amphibians occurring in soybean and implications for biological control in Argentina. Agric Ecosyst Environ 106:389–394CrossRefGoogle Scholar
  7. Babbitt KJ, Baber MJ, Tarr TL (2003) Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can J Zool 81:1539–1552CrossRefGoogle Scholar
  8. Bascompte J, Solé RV (1996) Habitat fragmentation and extinction thresholds in spatially explicit models. J Anim Ecol 65(4):465–473CrossRefGoogle Scholar
  9. Basso NG (1990) Estrategias adaptativas en una comunidad subtropical de anuros. Cuadernos de Herpetología. Series Monográficas 1:3–70Google Scholar
  10. Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New YorkCrossRefGoogle Scholar
  11. Bernardos J, Zaccagnini ME (2011) El uso de insecticidas en cultivos agrícolas y su riesgo potencial para las aves en la región pampeana. Hornero 26(1):55–64Google Scholar
  12. Bishop CA, Pettit KE (1992) Declines in Canadian amphibian populations: designing a national strategy. Canadian Wildlife Service, Ottawa, Ont. Occas. Pap. No. 76Google Scholar
  13. Bishop CA, Pettit KE, Gartshore ME, Macleod DA (1997) Extensive monitoring of anuran populations using call counts and road transects in Ontario (1992 to 1993). In: Green DM (ed) Amphibians in decline: Canadian studies of a global problem. Society for the Study of Amphibians and Reptiles, St. Louis, pp 149–160Google Scholar
  14. Bonin J, DesGranges L, Rodrigue J, Ouellet M (1997) Anuran species richness in agricultural landscapes of Quebec: foreseeing long-term results of road call surveys. In: Green DM (ed) Amphibians in decline: Canadian studies of a global problem. Society for the Study of Amphibians and Reptiles, St. Louis, pp 141–149Google Scholar
  15. Brodeur JC, Suárez RP, Natale GS, Ronco A, Zaccagnini ME (2011) Frogs inhabiting intensive crop production areas of Argentina exhibit reduced body condition and a distinct pattern of enzyme alterations. Environ Health Saf 74(5):1370–1380CrossRefGoogle Scholar
  16. Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New YorkCrossRefGoogle Scholar
  17. Burnham KP, Anderson DR (2001) Kullback–Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119CrossRefGoogle Scholar
  18. Cabrera AL (1971) Fitogeografía de la República Argentina. Bol Soc Argent Bot 14:1–42Google Scholar
  19. Calamari NC, Lamfri M, Zaccagnini ME (2006) Aplicaciones de la teledetección y los sistemas de información geográfica al estudio de la fragmentación del bosque nativo entrerriano y sus efectos sobre las poblaciones de aves. Trabajo final de aplicación. Universidad de LujánGoogle Scholar
  20. Cámara Argentina de Sanidad Agropecuaria y Fertilizantes [CASAFE] (2014) [Internet]. http://www.casafe.org/biblioteca/estadisticas
  21. Carr LW, Fahrig L (2001) Effect of road traffic on two amphibian species of different vagility. Conserv Biol 15:1071–1078CrossRefGoogle Scholar
  22. Cei JM (1980) Amphibians of Argentina. Monitore Zool Ital (ns). Monogr 2, p 609Google Scholar
  23. Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. 2nd edGoogle Scholar
  24. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240CrossRefGoogle Scholar
  25. Cushman SA, Compton BW, McGarigal K (2009) Chapter 20: Habitat fragmentation effects depend on complex interactions between population size and dispersal ability: modeling influences of roads, agriculture and residential development across a range of life-history characteristics. In: Huettmann F, Cushman SA (eds) Spatial complexity, informatics and wildlife conservation. Springer, Japan, pp 367–383Google Scholar
  26. Daversa RD, Muths E, Bosch J (2012) Terrestrial movement patterns of the common toad (Bufo bufo) in central Spain reveal habitat of conservation importance. J Herpetol 46(4):658–664CrossRefGoogle Scholar
  27. De la Fuente EB, Suárez SA (2008) Problemas ambientales asociados a la actividad humana: la agricultura. Ecol Austral 18:239–252Google Scholar
  28. Dodd CK Jr (ed) (2010) Amphibian ecology and conservation. A handbook of techniques. Oxford University Press, Oxford, p 556Google Scholar
  29. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175CrossRefGoogle Scholar
  30. Food and Agriculture Organization of the United Nations Statistics Division [FAOSTAT] (2014) [Internet]. http://faostat3.fao.org/home/E
  31. Forester DC, Snodgrass JB, Marsalek K, Lanham Z (2006) Post-breeding dispersal and summer home range of female american toads (Bufo americanus). Northeastern Nat 13(1):59–72CrossRefGoogle Scholar
  32. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  33. Gagné SA, Fahrig L (2007) Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada. Landscape Ecol 22:205–215CrossRefGoogle Scholar
  34. Gallardo JM (1972) Anfibios de la provincia de Buenos Aires. Observaciones sobre ecología y zoogeografía. Ciencia e Investigación 28(1-2):3-14Google Scholar
  35. Gallardo JM (1974) Anfibios de alrededores de Buenos Aires. EUDEBA, Buenos AiresGoogle Scholar
  36. Gallardo JM (1987) Anfibios Argentinos. Guia para su identificación Ed. Biblioteca MosaicoGoogle Scholar
  37. Gavier-Pizarro GI, Calamari NC, Thompson JJ, Canavelli SB, Solari LM, Decarre J, Goijman AP, Suarez RP, Bernardos JN, Zaccagnini ME (2012) Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density. Agric Ecosyst Environ 154:44–55CrossRefGoogle Scholar
  38. Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecol 13:263–268CrossRefGoogle Scholar
  39. Gooch MM, Heupel AM, Price SJ, Dorcas ME (2006) The effects of survey protocol on detection probabilities and site occupancy estimates of summer breeding anurans. Appl Herpetol 3:129–142CrossRefGoogle Scholar
  40. Guerry AD, Hunter ML Jr (2002) Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conserv Biol 16(3):745–754CrossRefGoogle Scholar
  41. Hecnar SJ (1997) Amphibian pond communities in southwestern Ontario. In: Green DM (ed) Amphibians in decline: Canadian studies of a global problem. Herpetological conservation 1. Society for the Study of Amphibians and Reptiles and Canadian Association of Herpetologists, St. Louis, MI, pp 1–15Google Scholar
  42. Hecnar SJ, M’Closkey RT (1996) Regional dynamics and the status of amphibians. Ecology 77:2091–2097CrossRefGoogle Scholar
  43. Herrmann HL, Babbitt KJ, Baber MJ, Congalton RG (2005) Effects of landscape characteristics on amphibian distribution in a forest-dominated landscape. Biol Conserv 123:139–149CrossRefGoogle Scholar
  44. Heyer WR, Donelly MA, McDiarmid RW, Hayek LC, Foster MS (eds) (1994) Measuring and monitoring biogical diversity: standard methods for amphibians. Smithsonian Institute Press, Washington DCGoogle Scholar
  45. Hocking DJ, Babbitt KJ (2014) Amphibian contributions to ecosystem services. Herpetol Conserv Biol 9(1):1–17Google Scholar
  46. Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755CrossRefPubMedGoogle Scholar
  47. Isacch JP, Barg M (2002) Are bufonid toads specialized ant-feeders? A case test from the Argentinian flooding pampa. J Nat Hist 36:2005–2012CrossRefGoogle Scholar
  48. Johnson CM, Johnson LB, Richards C, Beasley V (2002) Predicting the occurrence of amphibians: an assessment of multiple-scale models. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington DC, pp 157–170Google Scholar
  49. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 192:101–108CrossRefGoogle Scholar
  50. Joly P, Miaud C, Lehmann A, Grolet O (2001) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15:239–248CrossRefGoogle Scholar
  51. Knutson MG, Sauer JR, Olsen DA, Mossman MJ, Hemesath LM, Lannoo MJ (1999) Effects of landscape composition and wetland fragmentation on frog and toad density and species richness in Iowa and Wisconsin, USA. Conserv Biol 13:1437–1446CrossRefGoogle Scholar
  52. Kolozsvary MB, Swihart RK (1999) Habitat fragmentation and the distribution of amphibians, patch and landscape correlates in farmland. Can J Zool 77:1288–1299CrossRefGoogle Scholar
  53. Lajmanovich RC, Peltzer PM (2004) Aportes al Conocimiento de los Anfibios Anuros con Distribución en las Provincias de Santa Fe y Entre Ríos (Biología, Diversidad, Ecotoxicología y Conservación). Temas de la Biodiversidad del Litoral fluvial argentino INSUGEO, Miscelánea 12:291–302Google Scholar
  54. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  55. Lehtinen RM, Ramanamanjato J (2006) Effects of rainforest fragmentation and correlates of local extinction in a herpetofauna from Madagascar. Appl Herpetol 3:95–110CrossRefGoogle Scholar
  56. LePage M, Courtois R, Daigle C (1997) Surveying calling amphibians in Quebec using volunteers. Herpetol Conserv 1:128–140Google Scholar
  57. MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization and local extinction when a species is detected imperfectly. Ecology 84:2200–2207CrossRefGoogle Scholar
  58. Mackenzie DI, Royle JA (2005) Designing efficient occupancy studies: general advice and tips on allocation of survey effort. J Appl Ecol 42:1105–1114CrossRefGoogle Scholar
  59. Manzano S, Baldo D, Barg M (2004) Anfibios del Litoral Fluvial Argentino. Temas de la Biodiversidad del Litoral fluvial argentino INSUGEO, Miscelánea 12:271–290Google Scholar
  60. Marcot BG, Vander Heyden M (2001) Key ecological functions of wildlife species. In: Johnson DH, O’Neil TA (eds) Wildlife–habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, pp 168–186Google Scholar
  61. Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49CrossRefGoogle Scholar
  62. Martori R, Aun L, Gallego F, Rozzi Gimenez C (2005) Temporal variation and size class distribution ina a herpetological assemblage from Córdoba, Argentina. Cuad Herpetol 19(1):35–52Google Scholar
  63. McDiarmid RW, Altig R (1999) Tadpoles. The biology of anuran larvae. University of Chicago Press, ChicagoGoogle Scholar
  64. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  65. McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Report PNW-GTR-351, USDA Forest Service, Pacific Northwest Research Station, PortlandGoogle Scholar
  66. Mech SG, Zollner PA (2002) Using body size to predict perceptual range. Oikos 98:47–52CrossRefGoogle Scholar
  67. Mensing DM, Galatowitsch SM, Tester JR (1998) Anthropogenic effects on the biodiversity of riparian wetlands of a northern temperate landscape. J Environ Manag 53:349–377CrossRefGoogle Scholar
  68. Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier Academic Press, BurlingtonGoogle Scholar
  69. Oesterheld M (2008) Impacto de la agricultura sobre los ecosistemas. Fundamentos ecológicos y problemas más relevantes. Ecol Austral 18:337–346Google Scholar
  70. Opdam P (1990) Dispersal in fragmented populations: the key to survival. In: Bunce RGH, Howards DC (eds) Species dispersal in agricultural habitats. Belhaven Press, London, pp 3–17Google Scholar
  71. Peltzer PM, Lajmanovich RC (2007) Amphibians. In: The middle Parana River. Limnology of a subtropical wetland. Iriondo, Martin H, Paggi, Juan César, Parma, María Julieta eds. 382 pGoogle Scholar
  72. Peltzer PM, Lajmanovich RC, Attademo AM, Beltzer AH (2006) Anuran diversity across agricultural pond in Argentina. Biodivers Conserv 15:3499–3513CrossRefGoogle Scholar
  73. Peltzer PM, Lajmanovich RC, Sanchez LC, Attademo AM, Junges CM, Bionda CL, Martino AL, Basso A (2011) Morphological abnormalities in amphibian populations from the mid-eastern region of Argentina. Herpetol Conserv Biol 6:432–442Google Scholar
  74. Pérez Leiva F, Anastasio MD (2003) Consumo de fitosanitarios en el contexto de expansión agrícola. Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires. www.agro.uba.ar/apuntes/no_5/agroquimicos.htm
  75. Pohl C, Van Genderen JL (1998) Multisensor image fusion in remote sensing: concept, methods, and applications. Int J Remote Sens 19(5):823–854CrossRefGoogle Scholar
  76. Price SJ, Marks DR, Howe RW, Hanowski JM, Niemi GJ (2004) The importance of spatial scale for conservation and assessment of anuran populations in coastal wetlands of the western Great Lakes, USA. Landscape Ecol 20:441–454CrossRefGoogle Scholar
  77. Pulliam HR (1988) Sources, sinks and population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  78. QGIS Geographic Information System [internet] [QGIS Development Team] (2012) Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  79. Quesnelle PE, Lindsay KE, Fahrig L (2014) Low reproductive rate predicts species sensitivity to habitat loss: a meta-analysis of wetland vertebrates. PLoS One 9(3):e90926CrossRefPubMedPubMedCentralGoogle Scholar
  80. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  81. Rabinovich J, Torres F (2004) Caracterización de los síndromes de sostenibilidad del desarrollo. El caso de Argentina. Serie Seminarios y Conferencias. Comisión Económicas para América Latina y el Caribe (CEPAL). Documento LC/L .2155-P, SantiagoGoogle Scholar
  82. Rothermel BB (2004) Migratory success of juveniles: a potential constraint on connectivity for pond-breeding amphibians. Ecol Appl 14(5):1535–1546CrossRefGoogle Scholar
  83. Rothermel BB, Semlitsch RD (2002) An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conserv Biol 16:1324–1332CrossRefGoogle Scholar
  84. Sabattini RA, Ledesma S, Fontana E, Sabattini J, Diez JM, Brizuela A, Muracciole B (2009) Zonificación de los bosques nativos en el Departamento La Paz (Entre Ríos) según las categorías de conservaciónGoogle Scholar
  85. Sabattini RA, Ledesma S, Muracciole B, Sabattini J (2008) Categorización de las áreas de montes nativos en departamento La Paz, Entre Ríos. Rev COPAER 26:12–15Google Scholar
  86. Sabattini RA, Wilson MG, Muzzachiodi N, Dorsch AF (1999) Guía para la caracterización de agroecosistemas del centro-norte de Entre Ríos. Rev Cient Agropecu 3:7–19Google Scholar
  87. Sabattini RA, Ledesma S, Sabattini JA, Fontana E, Diez JM, Sabattini I (2010) Zonificación de los bosques nativos de los Departamentos Paraná, Nogoyá y Tala (Entre Ríos) según las categorías de conservación: Informe V. Oro Verde, Entre Ríos, UNER. 38 pGoogle Scholar
  88. Schrag AM, Zaccagnini ME, Calamari N, Canavelli S (2009) Climate and land-use influences on avifauna in central Argentina: broad-scale patterns and implications of agricultural conversion for biodiversity. Agric Ecosyst Environ 32(1–2):135–142CrossRefGoogle Scholar
  89. Seale DB (1980) Influence of amphibian larvae on primary production, nutrient flux and competition in a pond ecosystem. Ecology 61:1531–1550CrossRefGoogle Scholar
  90. Secretaría de Agricultura, Ganadería, Pesca y Alimentos [SAGPYA] (2014) http://informes.acabase.com.ar/Lists/SAGPYA%202012/AllItems.aspx
  91. Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17:1219–1228CrossRefGoogle Scholar
  92. Shirose LJ, Bishop CA, Green DM, MacDonald CJ, Brooks RJ, Helferty NJ (1997) Validation tests of an amphibian call count survey technique in Ontario, Canada. Herpetologica 53:312–320Google Scholar
  93. Silva FR, Oliveira TAL, Gibbs JP, Rossa-Feres DC (2012) An experimental assessment of landscape configuration effects on frog and toad abundance and diversity in tropical agro-savannah landscapes of southeastern Brazil. Landscape Ecol 27:87–96CrossRefGoogle Scholar
  94. Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79CrossRefGoogle Scholar
  95. Sparling DW (2002) A review of the role of contaminants in amphibian declines. In: Hoffman DJ, Rattner BA, Allen Burton G Jr, Cairns J Jr (eds) Chapter 40: Handbook of ecotoxicology. CRC Press, Boca Raton, pp 1099–1127Google Scholar
  96. Straneck R, de Olmedo EV, Carrizo GR (1993) Catálogo de voces de anfibios argentinos. Parte 1. Buenos Aires, LOLAGoogle Scholar
  97. Suárez RP, Zaccagnini ME (2004) Anuros asociados a campos de soja y la importancia de la heterogeneidad espacial. Libro de Resúmenes de la Reunión Binacional de Ecología 2004, MendozaGoogle Scholar
  98. Tassi H, Wilson M, Schulz G, Indelangelo N, Bedendo D (2011) Uso de la Tierra en el área de bosques nativos de Entre Ríos. http://inta.gob.ar/documentos/uso-de-la-tierra-en-el-area-de-bosques-nativos
  99. The IUCN Red List of Threatened Species (2015) Version 2014.3 [IUCN 2014.3] February 2015. www.iucnredlist.org
  100. Trenham PC, Shaffer HB (2005) Amphibian upland habitat use and its consequences for population viability. Ecol Appl 15(4):1158–1168CrossRefGoogle Scholar
  101. Vaira M, Akmentins MS, Attademo M, Baldo D, Barrasso D, Barrionuevo S, Basso N, Blotto B, Cairo S, Cajade R, Céspedez J, Corbalán V, Chilote P, Duré M, Falcione C, Ferraro D, Gutierrez FR, Ingaramo MR, Junges C, Lajmanovich R, Lescano JN, Marangoni F, Martinazzo L, Marti R, Moreno L, Natale GS, Perez Iglesias JM, Peltzer P, Quiroga L, Rosset S, Sanabria E, Sanchez L, Schaefer E, Úbeda C, Zaracho V (2012) Categorización del estado de conservación de los anfibios de la República Argentina. Cuad Herpetol 26(Suppl. 1):131–159Google Scholar
  102. Veysey JS, Mattfeldt SD, Babbitt KJ (2011) Comparative influence of isolation, landscape, and wetland characteristics on egg-mass abundance of two pool-breeding amphibian species. Landscape Ecol 26:661–672CrossRefGoogle Scholar
  103. Viglizzo EF, Le’rtora FA, Pordomingo AJ, Bernardos J, Roberto ZE, Del Valle H (2001) Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric Ecosyst Environ 81:65–81CrossRefGoogle Scholar
  104. Viglizzo EF, Pordomingo AJ, Castro MG, Lertora FA (2003) Environmental assessment of agriculture at a regional scale in the pampas of Argentina. Environ Monit Assess 87:169–195CrossRefPubMedGoogle Scholar
  105. U.S. EPA (2002) Methods for evaluating wetland condition: using amphibians in bioassessments of wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-022Google Scholar
  106. Weir LA, Mossman MJ (2005) North American Amphibian Monitoring Program (NAAMP). In: Lannoo M (ed) Amphibian declines: conservation status of United States amphibians. University of California Press, Berkeley, pp 307–313CrossRefGoogle Scholar
  107. Williams BK (2008) A multi-scale investigation of ecologically relevant effects of agricultural runoff on amphibians. PhD Dissertation, Faculty of the Graduate School at the University of Missouri, ColumbiaGoogle Scholar
  108. Wyman RL (1998) Experimental assessment of salamanders as predators of detrital food webs: effects on invertebrates, decomposition and the carbon cycle. Biodivers Conserv 7:641–650CrossRefGoogle Scholar
  109. Young S (2006) Agriculturalization as a syndrome: a comparative study of agriculture in Argentina and Australia. Serie Medioambiente y desarrollo N º 125. Comisión Económicas para América Latina y el Caribe (CEPAL)Google Scholar
  110. Zaccagnini ME, Bernardos J, Gonzalez C, Calamari N, De Carli R (2007a) Evaluación del Riesgo ecotoxicológico para aves por insecticidas usados en cultivos de Entre Ríos: un indicador de calidad ambiental. In: Caviglia OP, Paparotti OF, Sasal MC (eds) Agricultura Sustentable en Entre Ríos. INTA, Buenos Aires, pp 127–136Google Scholar
  111. Zaccagnini ME, Decarre J, Goijman A, Solari L, Suárez R, Weyland F (2007b) Efecto de la heterogeneidad ambiental de terrazas y bordes vegetados sobre la biodiversidad animal en campos de soja en Entre ríos. In: Caviglia OP, Paparotti OF, Sasal MC (eds) Agricultura Sustentable en Entre Ríos. INTA, Buenos Aires, pp 159–171Google Scholar
  112. Zollner PA (2000) Comparing the landscape level perceptual abilities of forest sciurids in fragmented agricultural landscapes. Landscape Ecol 15:523–533CrossRefGoogle Scholar
  113. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Sprimger, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Romina P. Suárez
    • 1
    Email author
  • Maria E. Zaccagnini
    • 1
  • Kimberly J. Babbitt
    • 2
  • Noela C. Calamari
    • 3
  • Guillermo S. Natale
    • 7
  • Alexis Cerezo
    • 4
    • 5
  • Nadia Codugnello
    • 6
  • Teresa Boca
    • 8
  • Maria J. Damonte
    • 1
  • Josefina Vera-Candioti
    • 9
    • 10
  • Gregorio I. Gavier-Pizarro
    • 1
  1. 1.Biodiversidad, Ecología y Gestión Ambiental en Agroecosistemas (BIOEGA), Instituto de Recursos Biológicos (IRB), Instituto Nacional de Tecnología Agropecuaria (INTA)Centro Nacional de Investigaciones Agropecuarias (CNIA)Buenos AiresArgentina
  2. 2.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA
  3. 3.Instituto Nacional de Tecnología Agropecuaria (INTA), EEA ParanáFactores Bióticos y Protección VegetalEntre RíosArgentina
  4. 4.Asociación Aves ArgentinasBuenos AiresArgentina
  5. 5.Departamento de Métodos Cuantitativos, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
  6. 6.Laboratorio de EcologíaUniversidad Nacional de LujánBuenos AiresArgentina
  7. 7.Centro de Investigaciones del Medio Ambiente, Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La PlataBuenos AiresArgentina
  8. 8.Instituto de Clima y Agua, Instituto Nacional de Tecnologia Agropecuaria (INTA)Centro Nacional de Investigaciones Agropecuarias (CNIA)Buenos AiresArgentina
  9. 9.Instituto Nacional de Tecnología Agropecuaria (INTA) A.E.R.Venado TuertoArgentina
  10. 10.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina

Personalised recommendations