Landscape Ecology

, Volume 32, Issue 7, pp 1415–1431 | Cite as

Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone

  • Yan Boulanger
  • Anthony R. Taylor
  • David T. Price
  • Dominic Cyr
  • Elizabeth McGarrigle
  • Werner Rammer
  • Guillaume Sainte-Marie
  • André Beaudoin
  • Luc Guindon
  • Nicolas Mansuy
Research Article

Abstract

Context

Forest landscapes at the southern boreal forest transition zone are likely to undergo great alterations due to projected changes in regional climate.

Objectives

We projected changes in forest landscapes resulting from four climate scenarios (baseline, RCP 2.6, RCP 4.5 and RCP 8.5), by simulating changes in tree growth and disturbances at the southern edge of Canada’s boreal zone.

Methods

Projections were performed for four regions located on an east–west gradient using a forest landscape model (LANDIS-II) parameterized using a forest patch model (PICUS).

Results

Climate-induced changes in the competitiveness of dominant tree species due to changes in potential growth, and substantial intensification of the fire regime, appear likely to combine in driving major changes in boreal forest landscapes. Resulting cumulative impacts on forest ecosystems would be manifold but key changes would include (i) a strong decrease in the biomass of the dominant boreal species, especially mid- to late-successional conifers; (ii) increases in abundance of some temperate species able to colonize disturbed areas in a warmer climate; (iii) increases in the proportions of pioneer and fire-adapted species in these landscapes and (iv) an overall decrease in productivity and total biomass. The greatest changes would occur under the RCP 8.5 radiative forcing scenario, but some impacts can be expected even with RCP 2.6.

Conclusions

Western boreal forests, i.e., those bordering the prairies, are the most vulnerable because of a lack of species adapted to warmer climates and major increases in areas burned. Conservation and forest management planning within the southern boreal transition zone should consider both disturbance- and climate-induced changes in forest communities.

Keywords

Climate change LANDIS-II PICUS Boreal forest Canada 

Notes

Acknowledgments

Special thanks go to Hong He, Jacob Fraser, WenJi Wang, Brice Hanberry, Brian Miranda and Robert Scheller for their help regarding the LANDIS-II model. We thank Manfred J. Lexer for kindly providing us access and assistance with the use of their model, PICUS. We would also like to thank Philippe Villemaire for his GIS support and Pamela Cheers for revising the wording. This study was funded by Natural Resources Canada. Brad Pinno and two anonymous reviewers provided useful comments on an earlier version of this manuscript.

Supplementary material

10980_2016_421_MOESM1_ESM.docx (1.5 mb)
Supplementary materials S1, S2, S4, S6−S9 (DOCX 1499 kb)
10980_2016_421_MOESM2_ESM.pdf (739 kb)
Supplementary material S3 (PDF 739 kb)
10980_2016_421_MOESM3_ESM.pdf (1.8 mb)
Supplementary material S5a (PDF 1861 kb)
10980_2016_421_MOESM4_ESM.pdf (1.8 mb)
Supplementary material S5b (PDF 1869 kb)
10980_2016_421_MOESM5_ESM.pdf (947 kb)
Supplementary material S5c (DOCX 946 kb)
10980_2016_421_MOESM6_ESM.pdf (995 kb)
Supplementary material S5d (PDF 995 kb)
10980_2016_421_MOESM7_ESM.pdf (1.2 mb)
Supplementary material S5e (PDF 1270 kb)
10980_2016_421_MOESM8_ESM.pdf (1.3 mb)
Supplementary material S5f (PDF 1331 kb)
10980_2016_421_MOESM9_ESM.pdf (1.1 mb)
Supplementary material S5g (PDF 1162 kb)

References

  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arora VK, Peng Y, Kurz WA, Fyfe JC, Hawkins B, Werner AT (2016) Potential near-future carbon uptake overcomes losses from a large insect outbreak in British Columbia, Canada. Geophys Res Lett 43:2590–2598CrossRefGoogle Scholar
  3. Beaudoin A, Bernier PY, Guindon L, Villemaire P, Guo XJ, Stinson G, Bergeron T, Magnussen S, Hall RJ (2014) Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery. Can J For Res 44:521–532CrossRefGoogle Scholar
  4. Beck PSA, Juday GP, Alix C, Barber VA, Winslow SE, Sousa EE, Heiser P, Herriges JD, Goetz SJ (2011) Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–379CrossRefPubMedGoogle Scholar
  5. Bergeron Y, Chen HYH, Kenkel NC, Leduc AL, Macdonald SE (2014) Boreal mixedwood stand dynamics: ecological processes underlying multiple pathways. For Chron 90:202–213CrossRefGoogle Scholar
  6. Boisvert-Marsh L, Périé C, De Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:83CrossRefGoogle Scholar
  7. Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450:89–92CrossRefPubMedGoogle Scholar
  8. Bond-Lamberty B, Rocha AV, Calvin K, Holmes B, Wang C, Goulden ML (2014) Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest. Global Change Biol 20:216–227CrossRefGoogle Scholar
  9. Boulanger Y, Arseneault D, Morin H, Jardon Y, Bertrand P, Dagneau C (2012) Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana Clem.) outbreaks in southern Québec for the last 400 years. Can J For Res 42:1264–1276CrossRefGoogle Scholar
  10. Boulanger Y, Cooke BJ, Gray DR, De Grandpré L (2016) Model-specification uncertainty in future forest pest outbreak. Global Change Biol 25:1595–1607.CrossRefGoogle Scholar
  11. Boulanger Y, Gauthier S, Burton PJ (2014) A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can J For Res 44:365–376CrossRefGoogle Scholar
  12. Brandt JP, Flannigan MD, Maynard DG, Thompson ID, Volney WJA (2013) An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ Rev 21:207–226CrossRefGoogle Scholar
  13. Brown CD, Johnstone JF (2012) Once burned, twice shy: repeat fires reduce seed availability and alter substrate constraints on Picea mariana regeneration. For Ecol Manag 266:34–41CrossRefGoogle Scholar
  14. Burns RM, Honkala BH (1990) Silvics of North America: 1. Conifers; 2. Hardwoods. Agriculture handbook 654, vol. 2. U.S. Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  15. Chen HYH, Luo Y (2015) Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada’s boreal forests. Global Change Biol 21:3675–3684CrossRefGoogle Scholar
  16. Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28:482–488CrossRefPubMedGoogle Scholar
  17. Cyr G (2014) Guide des stations forestières de la région écologique 3c—Hautes collines du Bas-SaintMaurice, 2e édition. Ministère des Ressources naturelles, Direction des inventaires forestiers, Division de la classification écologique et productivité des stationsGoogle Scholar
  18. De Groot WJ, Bothwell PM, Carlsson DH, Logan KA (2003) Simulating the effects of future fire regimes on western Canadian boreal forests. J Veg Sci 14:355–364CrossRefGoogle Scholar
  19. Drobyshev I, Guitard MA, Asselin H, Genries A, Bergeron Y (2013) Environmental controls of the northern distribution limit of the yellow birch in eastern Canada. Can J For Res 44:720–731CrossRefGoogle Scholar
  20. Duveneck MJ, Scheller RM (2015) Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landscape Ecol 31:669–686CrossRefGoogle Scholar
  21. Ecological Stratification Working Group (1996) A national ecological framework for Canada. Agriculture and Agri-Food Canada and Environment Canada, OttawaGoogle Scholar
  22. Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601CrossRefGoogle Scholar
  23. Fisichelli NA, Frelich LE, Reich PB (2014) Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography 37:152–161CrossRefGoogle Scholar
  24. Franklin J, Serra-Diaz JM, Syphard AD, Regan HM (2016) Global change and terrestrial plant community dynamics. Proc Natl Acad Sci USA 113:3725–3734CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frelich LE, Reich PB (2010) Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America? Front Ecol Environ 8:371–378CrossRefGoogle Scholar
  26. Gauthier S, Bernier PY, Boulanger Y, Guo J, Guindon L, Beaudoin A, Boucher D (2015a) Vulnerability of timber supply to projected changes in fire regime in Canada’s managed forests. Can J For Res 45:1439–1447CrossRefGoogle Scholar
  27. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015b) Boreal forest health and global change. Science 349:819–822CrossRefPubMedGoogle Scholar
  28. Gewehr S, Drobyshev I, Berninger F, Bergeron Y (2014) Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Can J For Res 44:487–498CrossRefGoogle Scholar
  29. Girardin MP, Bernier PY, Gauthier S (2011) Increasing potential NEP of eastern boreal North American forests constrained by decreasing wildfire activity. Ecosphere 2, Article 25Google Scholar
  30. Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo X, Cyr G (2015) Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Global Change Biol 22:627–643CrossRefGoogle Scholar
  31. Guindon L, Bernier PY, Beaudoin A, Pouliot D, Villemaire P, Hall RJ, Latifovic R, St-Amant R (2014) Annual mapping of large forest disturbances across Canada’s forests using 250 m MODIS imagery from 2000 to 2011. Can J For Res 44:1545–1554CrossRefGoogle Scholar
  32. Gustafson EJ (2013) When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecol 28:1429–1437CrossRefGoogle Scholar
  33. Gustafson EJ, Shifley SR, Mladenoff DJ, Nimerfro KK, He HS (2000) Spatial simulation of forest succession and timber harvesting using LANDIS. Can J For Res 30:32–43CrossRefGoogle Scholar
  34. Hennigar CR, MacLean DA, Quiring DT, Kershaw JA Jr (2008) Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For Sci 54:158–166Google Scholar
  35. Heyder U, Schaphoff S, Gerten D, Lucht W (2011) Risk of severe climate change impact on the terrestrial biosphere. Environ Res Lett 6:034036CrossRefGoogle Scholar
  36. Hogg EH, Bernier PY (2005) Climate change impacts on drought-prone forests in western Canada. For Chron 81:675–682CrossRefGoogle Scholar
  37. Hogg EH, Wien RW (2005) Impacts of drought on forest growth and regeneration following fire in southwestern Yukon, Canada. Can J For Res 35:2141–2150CrossRefGoogle Scholar
  38. Huang JG, Bergeron Y, Berninger F, Zhai L, Tardif JC, Denneler B (2013) Impact of future climate on radial growth of four major boreal tree species in the eastern Canadian boreal forest. PLoS ONE 8:e56758CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ireson AM, Barr AG, Johnstone JF, Mamet SD, van der Kamp G, Whitfield CJ, Michel NL, North RL, Westbrook CJ, DeBeer C, Chun KP, Nazemi A, Sagin J (2015) The changing water cycle: the Boreal Plains ecozone of western Canada. WIREs Water 2:505–521CrossRefGoogle Scholar
  40. Iverson LR, Prasad AM (2002) Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. For Ecol Manag 155:205–222CrossRefGoogle Scholar
  41. Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33:L09703Google Scholar
  42. Keane RW, Cary GJ, Flannigan MD, Parsons RA, Davies ID, King KJ, Li C, Bradstock RA, Gill M (2013) Exploring the role of fire, succession, climate, and weather on landscape dynamics using a comparative modeling. Ecol Model 266:172–186CrossRefGoogle Scholar
  43. Kurz WA, Shaw CH, Boisvenue C, Stinson G, Metsarata J, Leckie D, Dyk A, Smyth C, Neilson ET (2013) Carbon in Canada’s boreal forest—a synthesis. Environ Rev 21:260–292CrossRefGoogle Scholar
  44. Kurz WA, Stinson G, Rampley GJ, Dymon CC, Neilson ET (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551–1555CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lapointe-Garant MP, Huang JG, Gea-Izquierdo G, Raulier F, Bernier P, Berninger F (2010) Use of tree rings to study the effect of climate change on trembling aspen in Québec. Global Change Biol 16:2039–2051CrossRefGoogle Scholar
  46. Leithead MD, Anand M, Silva LCR (2010) Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal transition zone, Ontario, Canada. Oecologia 164:1095–1106CrossRefPubMedGoogle Scholar
  47. Lexer MJ, Hönninger K (2001) A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. For Ecol Manag 144:43–65CrossRefGoogle Scholar
  48. Lovejoy TE, Hannah L (2005) Climate change and biodiversity. Yale University Press, New HavenGoogle Scholar
  49. Luo Y, Chen HYH (2013) Observations from old forests underestimate climate change effects on tree mortality. Nat Commun 4:1655CrossRefPubMedPubMedCentralGoogle Scholar
  50. Luo Y, Chen HYH (2015) Climate change-associated tree mortality increases without decreasing water availability. Ecol Lett 18:1207–1215CrossRefGoogle Scholar
  51. MacLean DA (1980) Vulnerability of fir-spruce stands during uncontrolled spruce budworm outbreaks: a review and discussion. For Chron 56:213–221CrossRefGoogle Scholar
  52. Mansuy N, Thiffault E, Paré D, Bernier P, Guindon L, Villemaire P, Poirier V, Beaudoin A (2014) Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method. Geoderma 235–236:59–73CrossRefGoogle Scholar
  53. Matthews SN, Iverson LR, Prasad AM, Peters MP, Rodewald PG (2011) Modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history-factors. For Ecol Manag 262:1460–1472CrossRefGoogle Scholar
  54. McKenney D, Pedlar J, Hutchinson M, Papadopol P, Lawrence K, Campbell K, Milewska E, Hopkinson RF, Price D (2013) Spatial climate models for Canada’s forestry community. For Chron 89:659–663CrossRefGoogle Scholar
  55. McKenney DW, Pedlar JH, Lawrence K, Campbell K, Hutchinson MF (2007) Potential impacts of climate change on the distribution of North American trees. BioScience 57:939–948CrossRefGoogle Scholar
  56. McKenney DW, Pedlar JH, Rood RB, Price DT (2011) Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biol 17:2720–2730CrossRefGoogle Scholar
  57. McLaughlan MS, Wright RA, Jiricka RD (2010) Field guide to the ecosites of Saskatchewan’s provincial forests. Saskatchewan Ministry of Environment, Forest Service, Prince AlbertGoogle Scholar
  58. Michaelian M, Hogg EH, Hall RJ, Arseanault E (2011) Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Global Change Biol 17:2084–2094CrossRefGoogle Scholar
  59. Moos MT, Cumming BF (2011) Changes in the parkland-boreal forest boundary in northwestern Ontario over the Holocene. Quat Sci Rev 30:1232–1242CrossRefGoogle Scholar
  60. OMNR (2000) A silvicultural guide to managing southern Ontario forests. Version 1.1. Ontario Ministry of Natural Resources. Queen’s Printer for Ontario, TorontoGoogle Scholar
  61. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  62. Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1:467–471CrossRefGoogle Scholar
  63. Prasad AM, Gardiner JD, Iverson LR, Matthews SN, Peters M (2013) Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change. Global Change Biol 19:2196–2208CrossRefGoogle Scholar
  64. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg EH, Girardin MP, Lakusta T, Johnson M, McKenney DM, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365CrossRefGoogle Scholar
  65. Price DT, Cooke BJ, Metsaranta JM, Kurz WA (2015) If forest dynamics in Canada’s west are driven mainly by competition, why did they change? Half-century evidence says: climate change. Proc Natl Acad Sci USA 112:E4340CrossRefPubMedPubMedCentralGoogle Scholar
  66. Racey GD, Harris AG, Jeglum JK, Foster RF, Wickware GM (1996) Terrestrial and wetland ecosites of northwestern Ontario. Ontario Ministry of Natural Resources, Northwest Science and Technology Field Guide FG-02Google Scholar
  67. Régnière J, St-Amant R, Duval P (2012) Predicting insect distributions under climate change from ecophysiological responses: spruce budworm as an example. Biol Invasions 14:1571–1586CrossRefGoogle Scholar
  68. Reich PB, Sendall KM, Rice K, Rich RL, Stefanski A, Hobbie SE, Montgomery RA (2015) Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat Clim Change 5:148–152CrossRefGoogle Scholar
  69. Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, Mladenoff DJ (2007) Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible spatial and temporal resolution. Ecol Model 201:409–419CrossRefGoogle Scholar
  70. Scheller RM, Mladenoff DJ (2004) A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecol Model 180:211–229CrossRefGoogle Scholar
  71. Scheller RM, Mladenoff DJ (2005) A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and projected changes to forest composition and biomass in northern Wisconsin, USA. Global Change Biol 11:307–321CrossRefGoogle Scholar
  72. Scheller RM, Mladenoff DJ (2008) Simulated effects of climate change, fragmentation, and inter-specific competition on tree species migration in northern Wisconsin, USA. Clim Res 36:191–202CrossRefGoogle Scholar
  73. Seidl R, Lexer MJ, Jäger D, Hönninger K (2005) Evaluating the accuracy and generality of a hybrid patch model. Tree Physiol 25:939–951CrossRefPubMedGoogle Scholar
  74. Seidl R, Rammer W, Spies TA (2014) Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl 24:2063–2077CrossRefPubMedPubMedCentralGoogle Scholar
  75. Silva LCR, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS ONE 5:e11543CrossRefPubMedPubMedCentralGoogle Scholar
  76. Steenberg JWN, Duinker PN, Bush PG (2013) Modelling the effects of climate change and timber harvest on the forests of central Nova Scotia, Canada. Ann For Sci 70:61–73CrossRefGoogle Scholar
  77. Sturtevant BR, Gustafson EJ, Li W, He HS (2004) Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecol Model 180:153–174CrossRefGoogle Scholar
  78. Taylor AR, Chen HYH (2009) A review of forest succession models and their application to forest management. For Sci 55:14Google Scholar
  79. Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y (2013) Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35CrossRefPubMedGoogle Scholar
  80. Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgely GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152CrossRefGoogle Scholar
  81. USDA, NRCS (2016) The PLANTS Database (http://plants.usda.gov, 22 June 2016). National Plant Data Team, Greensboro, NC 27401-4901, USA
  82. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinhausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  83. Volney WJA, Hirsch KG (2005) Disturbing forest disturbances. For Chron 81:662–668CrossRefGoogle Scholar
  84. Wang Y, Hogg EH, Price DT, Edwards J, Williamson T (2014) Past and projected future changes in moisture conditions in the Canadian boreal forest. For Chron 90:678–691CrossRefGoogle Scholar
  85. Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106(S2):19729–19736CrossRefPubMedPubMedCentralGoogle Scholar
  86. Williams JW, Shuman B, Bartlein PJ (2009) Rapid responses of the prairie-forest transition zone to early Holocene aridity in mid-continental North America. Global Plan Change 66:195–207CrossRefGoogle Scholar
  87. Woodall CW, Zhu K, Westfall JA, Oswalt CM, D’Amato AW, Walters BF, Lintz HE (2013) Assessing the stability of tree ranges and influence of disturbance in eastern US forests. For Ecol Manag 291:172–180CrossRefGoogle Scholar
  88. Zhang J, Huang S, He F (2015) Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proc Natl Acad Sci USA 112:4009–4014CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang Y, Bergeron Y, Zhao X-H, Drobyshev I (2014) Stand history is more important than climate in controlling red maple (Acer rubrum L.) growth at its northern distribution limit in western Quebec, Canada. J Plant Ecol 8:368–379CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2016

Authors and Affiliations

  • Yan Boulanger
    • 1
  • Anthony R. Taylor
    • 2
  • David T. Price
    • 3
  • Dominic Cyr
    • 1
  • Elizabeth McGarrigle
    • 2
  • Werner Rammer
    • 4
  • Guillaume Sainte-Marie
    • 5
  • André Beaudoin
    • 1
  • Luc Guindon
    • 1
  • Nicolas Mansuy
    • 1
  1. 1.Natural Resources CanadaCanadian Forest Service, Laurentian Forestry CentreQuébecCanada
  2. 2.Natural Resources CanadaCanadian Forest Service, Atlantic Forestry CentreFrederictonCanada
  3. 3.Natural Resources CanadaCanadian Forest Service, Northern Forestry CentreEdmontonCanada
  4. 4.Department of Forest and Soil Sciences, BOKU, Institute of Silviculture (Institut für Waldbau)University of Natural Resources and Life SciencesViennaAustria
  5. 5.Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalCanada

Personalised recommendations