Landscape Ecology

, Volume 31, Issue 10, pp 2323–2342 | Cite as

A modeling approach for identifying recolonisation source sites in river restoration planning

  • Veronica DahmEmail author
  • Daniel Hering
Research Article



The colonization of restored river reaches by benthic macroinvertebrates and fish depends strongly on the proximity of source sites. Central European river networks have been fragmented over decades and populations of sensitive species have been eradicated from large parts of the catchments.


Identification of remaining source sites (i.e., near-natural river stretches with populations of sensitive organisms) allows to protect them and reconnect them to degraded or restored stretches. We developed an approach to identify source sites of fish and benthic invertebrates and applied it to large parts of Germany.


The approach is based on identifying source sites from sampling data (5919 benthic invertebrate and 2584 fish monitoring sites) depending on the occurring number of sensitive species. For river stretches that have not been sampled we conducted statistical modeling with environmental data (e.g. land use, river habitat data) using boosted regression trees to identify source sites characterized by similar environmental conditions.


The results are presented as maps on the level of the federal states. Statistical modeling allowed identification of stream type-specific environmental parameters and their thresholds. The maps allow a visual estimation of the recolonisation potential for river sections considered for restoration.


The results provide valuable insight into the perspective of restoration in different regions. For restoration planning we suggest application on a catchment level using environmental data with higher resolution and consideration of additional parameters (e.g. fine sediment input) in lowland regions.


Benthic invertebrates Fish GIS Boosted regression trees 



This study was carried out in frame of the project “Strategies for optimizing river restoration measures and the evaluation of restoration success” funded by the German Federal Environmental Agency (UBA). We greatly acknowledge the provision of biotic and environmental data by the water authorities of the federal states.

Supplementary material

10980_2016_402_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1638 kb)


  1. Arle J, Wagner F (2011) Die Bedeutung der Gewässerstruktur für das Erreichen des guten ökologischen Zustands in den Fließgewässern des Freistaates Thüringen. Fliessgewässerrenaturierung heute und morgen–Wasserrahmenrichtlinie Massnahmen und Effizienzkontrolle 13:207–233Google Scholar
  2. Beechie TJ, Sear DA, Olden JD, Pess GR, Buffington JM, Moir H, Roni P, Pollock MM (2010) Process-based principles for restoring river ecosystems. Bioscience 60(3):209–222CrossRefGoogle Scholar
  3. Bunce RGH, Bogers MMB, Evans D, Halada L, Jongman RHG, Mucher CA, Bauch B, de Blust G, Parr TW, Olsvig-Whittaker L (2013) The significance of habitats as indicators of biodiversity and their links to species. Ecol Indic 33:19–25CrossRefGoogle Scholar
  4. Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA) (2000) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland—Verfahren für kleine und mittelgroße Fließgewässer. SchwerinGoogle Scholar
  5. Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA) (2003) Karte der biozönotisch bedeutsamen Fließgewässertypen Deutschlands. Accessed Feb 2015
  6. Bundesamt für Kartographie und Geodäsie (BKG) (2015) Digitales Landschaftsmodell 1:1 000 000 (DLM1000). Accessed June 2016
  7. CEN (2003) Water quality—sampling of fish with electricity. European standard—EN 14011:2003. European Committee for Standardization, BrusselsGoogle Scholar
  8. Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792CrossRefPubMedGoogle Scholar
  9. Dahm V, Hering D, Nemitz D, Graf W, Schmidt-Kloiber A, Leitner P, Melcher A, Feld CK (2013) Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria. Hydrobiologia 704(1):389–415CrossRefGoogle Scholar
  10. Dußling U, Berg R, Klinger H, Wolter C (2014) Assessing the ecological status of river sytems using fish assemblages. Handbuch Angewandte Limnologie: Grundlagen—Gewässerbelastung—Restaurierung—Aquatische Ökotoxikologie—Bewertung—Gewässerschutz. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  11. Elith J, Leathwick JR (2014) Boosted regression trees for ecological modeling. Accessed Feb 2015
  12. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813CrossRefPubMedGoogle Scholar
  13. European Environment Agency (EEA) (2000) CORINE land cover technical guide—Addendum 2000. Accessed Feb 2015
  14. European Environment Agency (EEA) (2011a) Analysing and managing urban growth. Accessed Feb 2015
  15. European Environment Agency (EEA) (2011b) Hazardous substances in Europes fresh and marine waters—an overview. Technical report no 8/2011. Accessed Feb 2015
  16. European Environment Agency (EEA) (2012) Nutrients in freshwater (CSI 020)—assessment published Oct 2012. Accessed Feb 2015
  17. Federal Agency for Cartography and Geodesy (BKG) (2009) Digital terrain models for Germany. Accessed Feb 2015
  18. Federal Agency for Cartography and Geodesy (BKG) (2014) Digital landscape model. Accessed Feb 2015
  19. Feld CK (2013) Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes. Freshw Biol 58(4):715–729CrossRefGoogle Scholar
  20. Gellert G, Behrens S, Raschke M (2012) The return of degraded stream ecosystems by using positive impacts from near-natural sections: a new practical guide for restorations. Water Environ J 26(3):415–421CrossRefGoogle Scholar
  21. Gellert G, Pottgiesser T, Euler T (2014) Assessment of the structural quality of streams in Germany—basic description and current status. Environ Monit Assess 186(6):3365–3378CrossRefPubMedGoogle Scholar
  22. German Federal Environmental Agency (UBA) (2009) Ökologischer Zustand der Fließgewässer. Accessed Feb 2015
  23. Goddard MA, Post CJ, English WR, Pike JW (2008) Examining the impacts of changing land use on biological integrity in streams using geographical information systems and statistical modeling. Aquat Ecosyst Health Manag 11(2):230–242CrossRefGoogle Scholar
  24. Haase P, Hering D, Jähnig SC, Lorenz AW, Sundermann A (2013) The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 704:475–488CrossRefGoogle Scholar
  25. Haase P, Lohse S, Pauls S, Schindehütte K, Sundermann A, Rolauffs P, Hering D (2004) Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macroinvertebrate sampling and sorting. Limnol Ecol Manag Inland Waters 34(4):349–365CrossRefGoogle Scholar
  26. Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EBD (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci 95(25):14843–14847CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hering D, Aroviita J, Baattrup-Pedersen A, Brabec K, Buijse T, Ecke F, Friberg N, Gielczewski M, Januschke K, Köhler J, Kupilas B, Lorenz AW, Muhar S, Paillex A, Poppe M, Schmidt T, Schmutz S, Vermaat J, Verdonschot PFM, Verdonschot RCM, Wolter C, Kail J (2015) Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. J Appl Ecol 52:1518–1527CrossRefGoogle Scholar
  28. Hering D, Moog O, Sandin L, Verdonschot PFM (2004) Overview and application of the AQEM assessment system. Hydrobiologia 516(1–3):1–20CrossRefGoogle Scholar
  29. Hijmans RJ, Phillips S, Leathwick J, Elith J (2012) dismo: Species distribution modeling. R package version 0.7-15. Accessed Feb 2015
  30. Hopkins RL II (2009) Use of landscape pattern metrics and multiscale data in aquatic species distribution models: a case study of a freshwater mussel. Landscape Ecol 24(7):943–955CrossRefGoogle Scholar
  31. Hopkins RL II, Burr BM (2009) Modeling freshwater fish distributions using multiscale landscape data: a case study of six narrow range endemics. Ecol Model 220(17):2024–2034CrossRefGoogle Scholar
  32. Hughes CL, Dytham C, Hill JK (2007) Modelling and analysing evolution of dispersal in populations at expanding range boundaries. Ecol Entomol 32(5):437–445CrossRefGoogle Scholar
  33. Illies J (1978) Limnofauna Europaea. Gustav Fischer Verlag, StuttgartGoogle Scholar
  34. Januschke K, Sundermann A, Antons C, Haase P, Lorenz AW, Hering D (2009) Untersuchung und Auswertung von ausgewählten Renaturierungsbeispielen repräsentativer Fließgewässertypen der Flusseinzugsgebiete Deutschlands. Schriftenreihe des Deutschen Rats für Landespflege 82:23–39Google Scholar
  35. Kail J, Arle J, Jähnig SC (2012) Limiting factors and thresholds for macroinvertebrate assemblages in European rivers: empirical evidence from three datasets on water quality, catchment urbanization, and river restoration. Ecol Indic 18:63–72CrossRefGoogle Scholar
  36. Kail J, Brabec K, Januschke K, Poppe M (2015) The effect of river restoration on fish, macroinvertebrates and macrophytes: a meta-analysis. Ecol Indic 58:311–321CrossRefGoogle Scholar
  37. Kail J, Hering D (2009) The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Res Appl 25(5):537–550CrossRefGoogle Scholar
  38. Kail J, Wolter C (2011) Analysis and evaluation of large scale river restoration planning in Germany to better link river research and management. River Res Appl 27:985–999CrossRefGoogle Scholar
  39. Landesamt für Natur, Umwelt und Verbraucherschutz des Landes Nordrhein-Westfalen (LANUV) (2011) Strahlwirkungs- und Trittsteinkonzept in der Planungspraxis. LANUV-Arbeitsblatt 16. Accessed Feb 2015
  40. Lane JQ, Raimondi PT, Kudela RM (2009) Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. Mar Ecol Prog Ser 383:37–51CrossRefGoogle Scholar
  41. Leclere J, Oberdorff T, Belliard J, Leprieur F (2011) A comparison of modeling techniques to predict juvenile 0+ fish species occurrences in a large river system. Ecol Inform 6(5):276–285CrossRefGoogle Scholar
  42. Lorenz AW, Feld CK (2013) Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704(1):489–501CrossRefGoogle Scholar
  43. Lorenz AW, Hering D, Feld CK, Rolauffs P (2004) A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia 516(1–3):107–127CrossRefGoogle Scholar
  44. Meier C, Böhmer J, Biss R, Feld C, Haase P, Lorenz A, Rawer-Jost C, Rolauffs P, Schindehütte K, Schöll F, Sundermann A (2006) Weiterentwicklung und Anpassung des nationalen Bewertungssystems für Makrozoobenthos an neue internationale Vorgaben. Abschlussbericht im Auftrag des Umweltbundesamtes. Accessed Feb 2015
  45. Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. JAWRA J Am Water Resour Assoc 43(1):86–103CrossRefGoogle Scholar
  46. Nilsson C, Polvi LE, Gardeström J, Hasselquist EM, Lind L, Sarneel JM (2015) Riparian and in-stream restoration of boreal streams and rivers: success or failure? Ecohydrology 8:753–764. doi: 10.1002/eco.1480 CrossRefGoogle Scholar
  47. Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222CrossRefGoogle Scholar
  48. Panoutsou C, Elbersen B, Böttcher H (2011) Energy crops in the European context. Biomass futures. Intelligent energy Europe. Accessed Feb 2015
  49. Parkyn SM, Smith BJ (2011) Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration. Environ Manag 48(3):602–614CrossRefGoogle Scholar
  50. Pottgiesser T, Sommerhäuser M (2008) Beschreibung und Bewertung der deutschen Fliessgewässertypen. Steckbriefe und Anhang. Accessed Feb 2015
  51. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.
  52. Ridgeway G (2012) gbm: generalized boosted regression models. R package version 2.0-5. Accessed Feb 2012
  53. Roni P, Hanson K, Beechie T (2008) Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. North Am J Fish Manag 28:856–890CrossRefGoogle Scholar
  54. Stoll S, Sundermann A, Lorenz AW, Kail J, Haase P (2013) Small and impoverished regional species pools constrain colonisation of restored river reaches by fishes. Freshw Biol 58(4):664–674CrossRefGoogle Scholar
  55. Sundermann A, Stoll S, Haase P (2011) River restoration success depends on the species pool of the immediate surroundings. Ecol Appl 21(6):1962–1971CrossRefPubMedGoogle Scholar
  56. Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293CrossRefPubMedGoogle Scholar
  57. Thomas G (2014) Improving restoration practice by deriving appropriate techniques from analysing the spatial organization of river networks. Limnol Ecol Manag Inland Waters 45:50–60CrossRefGoogle Scholar
  58. Tockner K, Pusch M, Borchardt D, Lorang MS (2010) Multiple stressors in coupled river-floodplain ecosystems. Freshw Biol 55:135–151CrossRefGoogle Scholar
  59. Tong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manag 66(4):377–393CrossRefGoogle Scholar
  60. Van Teeffelen AJA, Vos CC, Opdam P (2012) Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol Conserv 153:239–253CrossRefGoogle Scholar
  61. Verdonschot PFM, Spears BM, Feld CK, Brucet S, Keizer-Vlek H, Borja A, Elliott M, Kernan M, Johnson RK (2013) A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704(1):453–474CrossRefGoogle Scholar
  62. Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318CrossRefGoogle Scholar
  63. Völker J, Borchardt D (2007) Hydromorphologische Bedingungen und deren Wechselwirkung mit der Makrozoobenthosbesiedlung. Ergebnisse und Schlussfolgerungen für die Umsetzung der WRRL in Bezug auf die Monitoringplanung und im Hinblick auf lokale regionale und überregionale Umweltziele. Abschlussbericht. Im Auftrag des Hessischen Landesamtes für Umwelt und Geologie (HLUG). Center for Environmental Systems Research (CESR), University of KasselGoogle Scholar
  64. Von Bertrab MG, Krein A, Stendera S, Thielen F, Hering D (2013) Is fine sediment deposition a main driver for the composition of benthic macroinvertebrate assemblages? Ecol Indic 24:589–598CrossRefGoogle Scholar
  65. Waite IR, Kennen JG, May JT, Brown LR, Cuffney TF, Jones KA, Orlando JL (2012) Comparison of stream invertebrate response models for bioassessment metrics1. JAWRA J Am Water Resour Assoc 48(3):570–583CrossRefGoogle Scholar
  66. Water Framework Directive (WFD) (2000) Directive 2000/60/EC. Accessed Feb 2015
  67. Winking C, Lorenz AW, Sures B, Hering D (2014) Recolonisation patterns of benthic invertebrates: a field investigation of restored former sewage channels. Freshw Biol 59(9):1932–1944CrossRefGoogle Scholar
  68. Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manag 21(2):203–217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculty of Biology, Aquatic EcologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations