Advertisement

Landscape Ecology

, Volume 31, Issue 10, pp 2275–2290 | Cite as

Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change

  • Marta A. Jarzyna
  • Benjamin Zuckerberg
  • Andrew O. Finley
  • William F. Porter
Research Article

Abstract

Context

Climate change is not occurring over a homogeneous landscape and the quantity and quality of available land cover will likely affect the way species respond to climate change. The influence of land cover on species’ responses to climate change, however, is likely to differ depending on habitat type and composition.

Objectives

Our goal was to investigate responses of forest and grassland breeding birds to over 20 years of climate change across varying gradients of forest and grassland habitat. Specifically, we investigated whether (i) increasing amounts of available land cover modify responses of forest and grassland-dependent birds to changing climate and (ii) the effect of increasing land cover amount differs for forest and grassland birds.

Methods

We used Bayesian spatially-varying intercept models to evaluate species- and community-level responses of 30 forest and 10 grassland birds to climate change across varying amounts of their associated land cover types.

Results

Responses of forest birds to climate change were weak and constant across a gradient of forest cover. Conversely, grassland birds responded strongly to changing climatic conditions. Specifically, increasing temperatures led to higher probabilities of localized extinctions for grassland birds, and this effect was intensified in regions with low amounts of grassland cover.

Conclusions

Within the context of northeastern forests and grasslands, we conclude that forests serve as a possible buffer to the impacts of climate change on birds. Conversely, species occupying open, fragmented grassland areas might be particularly at risk of a changing climate due to the diminished buffering capacity of these ecosystems.

Keywords

Breeding bird atlases Climate change Climate-land cover interaction Forest birds Grassland birds Habitat loss 

Notes

Acknowledgments

We would like to thank the volunteers who participated in both New York State Breeding Bird Atlases. We also thank Kimberley Corwin and Kevin McGowan for supplying atlas databases and Colin M. Beier, Daniel Bishop, and John Wiley for supplying climate data. The manuscript benefited from discussions with members of the Boone and Crockett Quantitative Wildlife Center at Michigan State University. We thank two anonymous reviewers for valuable comments on the earlier drafts of this manuscript. This study received financial support from NASA Grant NNXO9AK16G and Boone and Crockett Club. Andrew O. Finley was supported by the National Science Foundation (NSF) grants DMS-1513481, EF-1137309, EF-1241874, and EF-1253225.

Supplementary material

10980_2016_399_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 38 kb)
10980_2016_399_MOESM2_ESM.docx (618 kb)
Supplementary material 2 (DOCX 618 kb)
10980_2016_399_MOESM3_ESM.docx (303 kb)
Supplementary material 3 (DOCX 303 kb)
10980_2016_399_MOESM4_ESM.docx (418 kb)
Supplementary material 4 (DOCX 418 kb)
10980_2016_399_MOESM5_ESM.docx (243 kb)
Supplementary material 5 (DOCX 243 kb)

References

  1. Andrle RF, Carroll JR (1988) The atlas of breeding birds in New York State. Cornell University Press, IthakaGoogle Scholar
  2. Askins RA, Chavez-Ramirez F, Dale BC, Haas CA, Herkert JR, Knopf FL, Vickery PD (2007) Conservation of grassland birds in North America: understanding ecological processes in different regions. Ornithol Monogr 64:1–46Google Scholar
  3. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  4. Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial datasets. J R Stat Soc B 70:825–848CrossRefGoogle Scholar
  5. Barnagaud J-Y, Barbaro L, Hampe A, Jiguet F, Archaux F (2013) Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography 36:1218–1226CrossRefGoogle Scholar
  6. Barnagaud JY, Barbaro L, Papaix J, Deconchat M, Brockerhoff EG (2014) Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds. Ecology 95(1):78–87CrossRefPubMedGoogle Scholar
  7. Barnagaud J-Y, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F (2012) Relating habitat and climatic niches in birds. PLoS One 7(3):e32819CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bennett JM, Nimmo DG, Clarke RH, Thomson JR, Cheers G, Horrocks GFB, Hall M, Radford JQ, Bennettm AF, Mac Nally R (2014) Resistance and resilience: can the abrupt end of extreme drought reverse avifaunal collapse? Divers Distrib 20(11):1321–1332CrossRefGoogle Scholar
  9. Beyer HL (2013) Geospatial modelling environment. http://www.spatialecology.com/gme/. Accessed Oct 2013.Google Scholar
  10. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449CrossRefPubMedGoogle Scholar
  11. Brennan LA, Kuvlesky WP (2005) North American grassland birds: an unfolding conservation crisis? J Wildl Manag 69:1–13CrossRefGoogle Scholar
  12. Chamberlain DE, Negro M, Caprio E, Rolando A (2013) Assessing the sensititvity of alpine birds to potential future changes in habitat and climate to inform management startegies. Biol Conserv 167:127–135CrossRefGoogle Scholar
  13. Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49(4):288–297CrossRefGoogle Scholar
  14. Clavero M, Villero D, Brotons L (2011) Climate change or land use dynamics: Do we know what climate change indicators indicate? PLoS One 6(4):e18581CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cox WA, Thompson FR III, Reidy J, Faaborg J (2013) Temperature can interact with landscape factors to affect songbird productivity. Glob Chang Biol 19:1064–1074CrossRefPubMedGoogle Scholar
  16. Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, HobokenGoogle Scholar
  17. Daly C, Gibson W (2002) Parameter-estimation on Independent Slopes Model (PRISM). The PRISM Climate Group, Oregon. ftp://ncdc.noaa.gov/pub/data/prism100. Accessed Jan 2011
  18. De Frenne P, Rodríguez-Sánchez F, Coomes DA, Baeten L, Verstraeten G, Vellend M, Bernhardt-Römermann M, Brown CD, Brunet J, Cornelis J, Decocq GM, Dierschke H, Eriksson O, Gilliam FS, Hedl R, Heinken T, Hermy M, Hommel P, Jenkins MA, Kelly DL, Kirby KJ, Mitchell FJG, Naaf T, Newman M, Peterken G, Petrik P, Schultz J, Sonnier G, Calster HV, Waller DM, Walther G-R, White PS, Woods KD, Wulf M, Graae BJ, Verheyen K (2013) Microclimate moderates plant responses to macroclimate warming. Proc R Soc B Biol Sci 110(46):18561–18565Google Scholar
  19. DeGraaf RM, Yamasaki M (2001) New England wildlife; habitat, natural history, and distribution. University Press of New England, HanoverGoogle Scholar
  20. Dobrowski SZ, Swanson AK, Abatzoglou JT, Holden ZA, Safford HD, Schwartz MK, Gavin DG (2015) Forest structure and species traits mediate projected recruitment declines in western US tree species. Glob Ecol Biogeogr 24(8):917–927CrossRefGoogle Scholar
  21. Finley AO, Banerjee S, Gelfand AE (2015) spBayes for large univariate and multivariate point-referenced spatio-temporal data models. J Stat Softw 63(13):1–28CrossRefGoogle Scholar
  22. Fry JA, Coan MJ, Homer CG, Meyer DK, Wickham JD (2009) Completion of the National Land Cover Database (NLCD) 1992–2001 land cover change retrofit product: U.S. Geological Survey Open-File Report 2008–1379Google Scholar
  23. Fuller RJ, Gregory RD, Gibbons DW, Marchant JH, Wilson JD, Baillie SR, Carter N (1995) Population declines and range contractions among lowland farmland birds in Britain. Conserv Biol 9(6):1425–1441CrossRefGoogle Scholar
  24. Gaublomme E, Eggermont H, Hendrickx F (2014) Local extinction processes rather than edge effects affect ground beetle assemblages from fragmented and urbanised old beech forests. Insect Conserv Divers 7:82–90CrossRefGoogle Scholar
  25. Geiger R, Aron RH, Todhunter P (2009) The climate near the ground. Rowman & Littlefield Publishing Group, LanhamGoogle Scholar
  26. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  27. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511CrossRefGoogle Scholar
  28. Gibbons DW, Donald PF, Bauer HG, Fornasari L, Dawson IK (2007) Mapping avian distributions: the evolution of bird atlases. Bird Study 54:324–334CrossRefGoogle Scholar
  29. Griffen BD, Drake JM (2008) A review of extinction in experimental populations. J Anim Ecol 77:1274–1287CrossRefPubMedGoogle Scholar
  30. Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ (2001) Global change in forests: responses of species, communities, and biomes. Bioscience 51(9):765–779CrossRefGoogle Scholar
  31. Helzer CJ, Jelinski DE (1999) The relative importance of patch area and perimeter-area ratio to grassland breeding birds. Ecol Appl 9(4):1448–1458Google Scholar
  32. Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national landcover database for the United States. Photogramm Eng Remote Sens 70(7):829–840CrossRefGoogle Scholar
  33. Jarzyna MA, Porter WF, Maurer BA, Zuckerberg B, Finley AO (2015) Landscape fragmentation affects responses of avian communities to climate change. Glob Chang Biol 21(8):2942–2953CrossRefPubMedGoogle Scholar
  34. Jarzyna MA, Zuckerberg B, Porter WF (2013) Climate change and wildlife. In: Krausman PR, Cain JW III (eds) Wildlife management and conservation: contemporary principles and practices. Johns Hopkins University Press, Baltimore, pp 262–278Google Scholar
  35. Jeltsch F, Moloney KA, Schwager M, Körner K, Blaum N (2011) Consequences of correlations between habitat modifications and negative impact of climate change for regional species survival. Agric Ecosyst Environ 145:49–58CrossRefGoogle Scholar
  36. Jiguet F, Devictor V, Ottvall R, Van Turnhout C, Van der Jeugd H, Lindström A (2010) Bird population trends are linearly affected by climate change along species thermal ranges. Proc R Soc B 277:3601–3608CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kampichler C, van Turnhout CAM, Devictor V, van der Jeugd HP (2012) Large-scale changes in community composition: determining land use and climate change signals. PLoS One 7(4):e35272CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kleijn D, Schekkerman H, Dimmers WJ, Van Kats RJM, Melman D, Teunissen WA (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152(3):475–486CrossRefGoogle Scholar
  39. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382CrossRefGoogle Scholar
  40. Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann N Y Acad Sci 1162:79–98CrossRefPubMedGoogle Scholar
  41. Lawler JJ, Ackerly DD, Albano CM, Anderson MG, Dobrowski SZ, Gill JL, Heller NE, Pressey RL, Sanderson EW, Weiss SB (2015) The theory behind, and the challenges of conserving nature’s stage in a time of rapid change. Conserv Biol 29(3):618–629CrossRefPubMedGoogle Scholar
  42. Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected land-use change impacts on ecosystem services in the United States. PNAS 111(20):7492–7497CrossRefPubMedPubMedCentralGoogle Scholar
  43. Martinuzzi S, Withey JC, Pidgeon AM, Plantinga AJ, McKerrow AJ, Williams S, Helmers DP, Radeloff VC (2015) Future land-use scenarios and the loss of wildlife habitats in the southeastern United States. Ecol Appl 25(1):160–171CrossRefPubMedGoogle Scholar
  44. McCarthy MA, Thompson CJ, Possingham HP (2005) Theory for designing nature reserves for single species. Am Nat 165(2):250–257CrossRefPubMedGoogle Scholar
  45. McDonald KW, McClure CJW, Rolek BW, Hill GE (2012) Diversity of birds in eastern North America shifts north with global warming. Ecol Evol 2:3052–3060CrossRefPubMedPubMedCentralGoogle Scholar
  46. McGarigal K, Cushman SA, Ene E (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed Oct 2013
  47. McGowan M, Corwin K (2008) The Second Atlas of breeding birds in New York State. Cornell University Press, IthakaGoogle Scholar
  48. Moss R, Oswald J, Baines D (2001) Climate change and breeding success: decline of the capercaillie in Scotland. J Anim Ecol 70:47–61CrossRefGoogle Scholar
  49. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62CrossRefPubMedGoogle Scholar
  50. Nuñez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, Singleton PH, Tewksbury JJ (2013) Connectivity planning to address climate change. Conserv Biol 27(2):407–416CrossRefPubMedGoogle Scholar
  51. Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297CrossRefGoogle Scholar
  52. Pacifici AM, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akcakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffman AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–224CrossRefGoogle Scholar
  53. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  54. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11Google Scholar
  55. Pomara LY, LeDee OE, Martin KJ, Zuckerberg B (2014) Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species. Glob Chang Biol 20:2087–2099CrossRefPubMedGoogle Scholar
  56. Reif J (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol 48(1):1–16CrossRefGoogle Scholar
  57. Ribic CA, Koford RR, Herkert JR, Johnson DH, Niemuth ND, Naugle DE, Bakker KK, Sample DW, Renfrew RB (2009) Area sensitivity in North American grassland birds: patterns and processes. Auk 126(2):233–244CrossRefGoogle Scholar
  58. Runge CA, Tulloch A, Hammill E, Possingham HP, Fuller RA (2015) Geographic range size and extinction risk assessment in nomadic species. Conserv Biol 29(3):865–876CrossRefPubMedPubMedCentralGoogle Scholar
  59. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc B 64:583–639CrossRefGoogle Scholar
  60. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreire de Sququeira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  61. Tingley MW, Estes LD, Wilcove DS (2013) Climate change must not blow conservation off course. Nature 500:271–272CrossRefPubMedGoogle Scholar
  62. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473CrossRefGoogle Scholar
  63. Vickery PD, Dunwiddie PW (1997) Introduction. In: Vickery PD, Dunwiddie PW (eds) Grasslands of Northeastern North America. Massachusetts Audubon Society, Lincoln, pp 1–13Google Scholar
  64. Vickery PD, Zuckerberg B, Jones AL, Shriver WG, Weik AP (2005) Influence of fire and other anthropogenic practices on grassland and shrubland birds in New England. In: Saab VA, Powell HDW (eds.) Fire and Avian Ecology in North America. Studies in Avian Biology, No 30, pp. 139–146Google Scholar
  65. Villegas JC, Breshears DD, Zou CB, Royer PD (2010) Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zone J 9(3):537–547CrossRefGoogle Scholar
  66. Virkkala R, Heikkinen RK, Lehikoinen A, Valkama J (2014) Matching trends between recent distributional changes of northern-boreal birds and species-climate model predictions. Biol Conserv 172:124–127CrossRefGoogle Scholar
  67. Von Arx G, Pannatier E, Thimonier A, Rebetez M (2013) Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol 101:1201–1213CrossRefGoogle Scholar
  68. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  69. Wickham JD, Wade TG, Ritters KH (2012) Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the continental United States. Glob Ecol Biogeogr 22(5):620–629CrossRefGoogle Scholar
  70. Winter M, Johnson DH, Shaffer JA, Donovan TM, Svedarsky WD (2006) Patch size and landscape effects on density and nesting success of grassland birds. J Wildl Manag 70(1):157–172CrossRefGoogle Scholar
  71. Zuckerberg B, Porter WF, Corwin K (2009) The consistency and stability of abundance-occupancy relationships in large-scale population dynamics. J Anim Ecol 78:172–181CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marta A. Jarzyna
    • 1
    • 4
  • Benjamin Zuckerberg
    • 2
  • Andrew O. Finley
    • 3
  • William F. Porter
    • 1
  1. 1.Department of Fisheries and WildlifeMichigan State UniversityEast LansingUSA
  2. 2.Department of Forest and Wildlife EcologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Departments of Forestry and GeographyMichigan State UniversityEast LansingUSA
  4. 4.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA

Personalised recommendations