Landscape Ecology

, Volume 31, Issue 9, pp 2163–2174 | Cite as

Local and landscape effects of agricultural intensification on Carabid community structure and weed seed predation in a perennial cropping system

  • Adrien Rusch
  • Delphine Binet
  • Lionel Delbac
  • Denis Thiéry
Research Article



The effects of agricultural intensification on service-providing communities remain poorly studied in perennial cropping systems. However, such systems differ greatly from annual cropping systems in terms of spatio-temporal dynamics and levels of disturbance. Identifying how land use changes at different scales affect communities and ecosystem services in those habitats is of major importance.


Our objectives were to examine the effects of local and landscape agricultural intensification on ground beetle community structure and weed seed predation services.


We examined the effects of local vegetation management and landscape context on ground beetle community structure and weed seed predation in 20 vineyards of southwestern France in 2013 and 2014. Vineyards were selected along a landscape complexity gradient and experienced different management of local vegetation.


The activity-density of ground beetles decreased with increasing landscape complexity while species richness and evenness remained unchanged. Phytophagous and macropterous species dominated ground beetle communities. Seed predation was positively related to the activity-density of one species, Harpalus dimidiatus, and was not affected by local management or landscape context. We found that within-year temporal diversity in ground beetle assemblages increased with landscape complexity.


Our study shows that increasing the proportion of semi-natural habitats in vineyard landscapes enhances the temporal diversity of ground beetles. However, we also found that measures targeting specific species delivering biological control services are a reasonable strategy if we are to maximize natural pest control services such as weed seed regulation to support crop production and reduce agrochemical use.


Biological control Carabidae Ecological intensification Functional diversity Predators Trophic interactions Beta diversity Species turnover 



We thank Aurore Sage, Benjamin Joubard, Alice Chéron and Emilie Vergnes for precious assistance during fieldwork. This research was funded by a grant from the CASDAR Biocontrol to AR and DT and by a Grant from INRA SPE to AR. This research was carried out within the cluster of excellence COTE (Continental to Coastal Ecosystems: Evolution, Adaptability and Governance).

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest to declare.

Supplementary material

10980_2016_390_MOESM1_ESM.doc (3.6 mb)
Supplementary material 1 (DOC 3639 kb)


  1. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  2. Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812CrossRefGoogle Scholar
  3. Batáry P, Báldi A, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B 278:1894–1902CrossRefPubMedGoogle Scholar
  4. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  5. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blitzer EJ, Dormann CF, Holzschuh A, Klein A-M, Rand TA, Tscharntke T (2012) Spillover of functionally important organisms between managed and natural habitats. Agric Ecosyst Environ 146:34–43CrossRefGoogle Scholar
  7. Bruggisser OT, Schmidt-Entling MH, Bacher S (2010) Effects of vineyard management on biodiversity at three trophic levels. Biol Conserv 143:1521–1528CrossRefGoogle Scholar
  8. Butault JP, Dedryver CA, Gary C, Guichard L, Jacquet F, Meynard JM, Nicot P, Pitrat M, Reau R, Sauphanor B, Savini I, Volay T (2010) Synthèse du rapport d’étude Écophyto R&D quelles voies pour réduire l’usage des pesticides? INRA EditionsGoogle Scholar
  9. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  10. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67CrossRefPubMedGoogle Scholar
  11. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932CrossRefPubMedGoogle Scholar
  12. Danne A, Thomson LJ, Sharley DJ, Penfold CM, Hoffmann AA (2010) Effects of native grass cover crops on beneficial and pest invertebrates in Australian vineyards. Environ Entomol 39:970–978CrossRefPubMedGoogle Scholar
  13. Eilers EJ, Klein AM (2009) Landscape context and management effects on an important insect pest and its natural enemies in almond. Biol Control 51:388–394CrossRefGoogle Scholar
  14. Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  15. Hendrickx F, Maelfait JP, Desender K, Aviron S, Bailey D, Diekotter T, Lens L, Liira J, Schweiger O, Speelmans M, Vandomme V, Bugter R (2009) Pervasive effects of dispersal limitation on within- and among-community species richness in agricultural landscapes. Global Ecol Biogeogr 18:607–616CrossRefGoogle Scholar
  16. Holland JM, Luff ML (2000) The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr Pest Manag Rev 5:109–129CrossRefGoogle Scholar
  17. Jeanneret P, Schüpbach B, Luka H (2003) Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agric Ecosyst Environ 98:311–320CrossRefGoogle Scholar
  18. Jonason D, Smith HG, Bengtsson J, Birkhofer K (2013) Landscape simplification promotes weed seed predation by carabid beetles (Coleoptera: Carabidae). Landscape Ecol 28:487–494CrossRefGoogle Scholar
  19. Kleijn D, Rundlöf M, Scheper J, Smith HG, Tscharntke T (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481CrossRefPubMedGoogle Scholar
  20. Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein AM, Kremen C, M’Gonigle LK, Rader R, Ricketts TH, Williams NM, Lee Adamson N, Ascher JS, Báldi A, Batáry P, Benjamin F, Biesmeijer JC, Blitzer EJ, Bommarco R, Brand MR, Bretagnolle V, Button L, Cariveau DP, Chifflet R, Colville JF, Danforth BN, Elle E, Garratt MPD, Herzog F, Holzschuh A, Howlett BG, Jauker F, Jha S, Knop E, Krewenka KM, Le Féon V, Mandelik Y, May EA, Park MG, Pisanty G, Reemer M, Riedinger V, Rollin O, Rundlöf M, Sardiñas HS, Scheper J, Sciligo AR, Smith HG, Steffan-Dewenter I, Thorp R, Tscharntke T, Verhulst J, Viana BF, Vaissière BE, Veldtman R, Westphal C, Potts SG (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kotze DJ, Brandmayr P, Casale A, Dauffy-Richard E, Dekoninck W, Koivula MJ, Lövei GL, Mossakowski D, Noordijk J, Paarmann W, Pizzolotto R, Saska P, Schwerk A, Serrano J, Szyszko J, Taboada A, Turin H, Venn S, Vermeulen R, Zetto T (2011) Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100:55–148CrossRefPubMedGoogle Scholar
  22. Kulkarni SS, Dosdall LM, Willenborg CJ (2015) The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: a review. Weed Sci 63:335–376CrossRefGoogle Scholar
  23. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12Google Scholar
  24. Laliberté E, Wells JA, DeClerck F, Metcalfe DJ, Catterall CP, Queiroz C, Aubin I, Bonser SP, Ding Y, Fraterrigo JM, McNamara S, Morgan JW, Merlos DS, Vesk PA, Mayfield MM (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86CrossRefPubMedGoogle Scholar
  25. Landis DA, Wratten SD, Gurr GM (2000) Habitat Management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201CrossRefPubMedGoogle Scholar
  26. Leps J, De Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  27. Lindroth CH (1985) The Carabidae (Coleoptera) of Fennoscandia and Denmark, vol 15, part 1. Fauna Entomologica Scandinavica, LeidenGoogle Scholar
  28. Luff ML (1998) Provisional atlas of the ground beetles (Coleoptera: Carabidae) of Britain. Biological Records Centre, HuntingdonGoogle Scholar
  29. Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, New YorkGoogle Scholar
  30. Maisonhaute JÉ, Peres-Neto P, Lucas É (2010) Influence of agronomic practices, local environment and landscape structure on predatory beetle assemblage. Agric Ecosyst Environ 139:500–507CrossRefGoogle Scholar
  31. Menalled FD, Marino PC, Renner KA, Landis DA (2000) Post-dispersal weed seed predation in Michigan crop fields as a function of agricultural landscape structure. Agric Ecosyst Environ 77:193–202CrossRefGoogle Scholar
  32. Menalled FD, Smith RG, Dauer JT, Fox TB (2007) Impact of agricultural management on carabid communities and weed seed predation. Agric Ecosyst Environ 118:49–54CrossRefGoogle Scholar
  33. Nicholls CI, Parrella M, Altieri MA (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landscape Ecol 16:133–146CrossRefGoogle Scholar
  34. Petit S, Boursault A, Guilloux ML, Munier-Jolain N, Reboud X (2010) Weeds in agricultural landscapes: a review. Agron Sustain Dev 31:309–317CrossRefGoogle Scholar
  35. Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005) Landscape context of organic and conventional farms: Influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174CrossRefGoogle Scholar
  36. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  37. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614CrossRefPubMedGoogle Scholar
  38. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176CrossRefGoogle Scholar
  39. Roschewitz I, Thies C, Tscharntke T (2005) Are landscape complexity and farm specialisation related to land-use intensity of annual crop fields? Agric Ecosyst Environ 105:87–99CrossRefGoogle Scholar
  40. Roume A, Deconchat M, Raison L, Balent G, Ouin A (2011) Edge effects on ground beetles at the woodlot–field interface are short-range and asymmetrical. Agric Forest Entomol 13:395–403CrossRefGoogle Scholar
  41. Rusch A, Birkhofer K, Bommarco R, Smith HG, Ekbom B (2014) Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia 175:971–983CrossRefPubMedGoogle Scholar
  42. Rusch A, Birkhofer K, Bommarco R, Smith HG, Ekbom B (2015b) Predator body sizes and habitat preferences predict predation rates in an agroecosystem. Basic Appl Ecol 16:250–259CrossRefGoogle Scholar
  43. Rusch A, Delbac L, Muneret L, Thiéry D (2015a) Organic farming and host density affect parasitism rates of tortricid moths in vineyards. Agric Ecosyst Environ 214:46–53CrossRefGoogle Scholar
  44. Rusch A, Valantin-Morison M, Sarthou J, Roger-Estrade J (2010) Biological control of insect pests in agroecosystems: effects of crop management, farming systems and semi-natural habitats at the landscape scale. A review. Adv Agron 109:219–259CrossRefGoogle Scholar
  45. Sanguankeo PP, León RG (2011) Weed management practices determine plant and arthropod diversity and seed predation in vineyards. Weed Res 51:404–412CrossRefGoogle Scholar
  46. Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landscape Ecol 25:941–954CrossRefGoogle Scholar
  47. Schellhorn NA, Gagic V, Bommarco R (2015) Time will tell: resource continuity bolsters ecosystem services. Trends Ecol Evol 30:524–530CrossRefPubMedGoogle Scholar
  48. Schweiger O, Maelfait JP, Van Wingerden W, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Frenzel M, Herzog F, Liira J, Roubalova M, Bugter R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139CrossRefGoogle Scholar
  49. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365CrossRefGoogle Scholar
  50. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594CrossRefPubMedGoogle Scholar
  51. Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R, Clement LW, Ceryngier P, Dennis C, Emmerson M, Gagic V, Hawro V, Liira J, Weisser WW, Winqvist C, Tscharntke T (2011) The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecol Appl 21:2187–2196CrossRefPubMedGoogle Scholar
  52. Thomson LJ, Hoffmann AA (2013) Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. Biol Control 64:57–65CrossRefGoogle Scholar
  53. Trichard A, Alignier A, Biju-Duval L, Petit S (2013) The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic Appl Ecol 14:235–245CrossRefGoogle Scholar
  54. Trichard A, Ricci B, Ducourtieux C, Petit S (2014) The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric Ecosyst Environ 188:40–47CrossRefGoogle Scholar
  55. Trivellone V, Paltrinieri LP, Jermini M, Moretti M (2012) Management pressure drives leafhopper communities in vineyards in Southern Switzerland. Insect Conserv Divers 5:75–85CrossRefGoogle Scholar
  56. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  57. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685CrossRefPubMedGoogle Scholar
  58. Tylianakis JM, Klein AM, Tscharntke T (2005) Spatiotemporal variation in the diversity of hymenoptera across a tropical habitat gradient. Ecology 86:3296–3302CrossRefGoogle Scholar
  59. Westerman PR, Hofman A, Vet LEM, van der Werf W (2003) Relative importance of vertebrates and invertebrates in epigeaic weed seed predation in organic cereal fields. Agric Ecosyst Environ 95:417–425CrossRefGoogle Scholar
  60. Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635CrossRefPubMedGoogle Scholar
  61. Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S, Fischer C, Flohre A, Geiger F, Liira J, Pärt T, Thies C, Tscharntke T, Weisser WW, Bommarco R (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579CrossRefGoogle Scholar
  62. Woltz JM, Isaacs R, Landis DA (2012) Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric Ecosyst Environ 152:40–49CrossRefGoogle Scholar
  63. Woodcock BA, Redhead J, Vanbergen AJ, Hulmes L, Hulmes S, Peyton J, Nowakowski M, Pywell RF, Heard MS (2010) Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric Ecosyst Environ 139:181–186CrossRefGoogle Scholar
  64. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Adrien Rusch
    • 1
    • 2
  • Delphine Binet
    • 1
    • 2
  • Lionel Delbac
    • 1
    • 2
  • Denis Thiéry
    • 1
    • 2
  1. 1.INRA, UMR1065 Santé et Agroécologie du VignobleVillenave d’OrnonFrance
  2. 2.Université de Bordeaux, ISVV, INRA UMR 1065 SAVE, Bordeaux Sciences AgroVillenave d’Ornon CedexFrance

Personalised recommendations