Landscape Ecology

, Volume 31, Issue 9, pp 1955–1973 | Cite as

Locating wildlife crossings for multispecies connectivity across linear infrastructures

  • Anne MimetEmail author
  • Céline Clauzel
  • Jean-Christophe Foltête
Research Article



Linear transportation infrastructures traverse and separate wildlife populations, potentially leading to their short- and long-term decline at local and regional scales. To attenuate such effects, we need wildlife crossings suitable for a wide range of species.


We propose a method for identifying the best locations for wildlife crossings along linear infrastructures so as to improve the connectivity of species with varying degrees of mobility and living in different habitats. We evaluate highway impacts on mammal species.


The study area is the Grésivaudan Valley, France. We used allometric relationships to create eight virtual species and model their connectivity networks, developing a nested method defining populations by daily travel distances and connecting them by dispersal. We tested the gain in connectivity for each species produced by 100 and 600 crossing locations respectively in crossable, i.e. with crossing infrastructures, and uncrossable highway scenarios. We identified the crossings that optimize the connectivity of the maximum number of species combining the results in multivariate analyses.


Highly mobile species needing a large habitat area were the most sensitive to highways. The importance of locomotive performance in structuring the graphs decreased with highway impermeability. Depending on the species, the best locations improved connectivity by 0–10 and 2–75 % respectively in the crossable and uncrossable scenarios. Compromise locations were found for seven of the eight species in both scenarios.


This method could guide planners in identifying crossing locations to increase the connectivity of different species at regional scales over the long term.


Multispecies Connectivity Allometric relationships Highway Population Dispersal Daily distance Slope Local and regional impacts 



We wish to thank Jean-Louis Michelot and Laurent Simon from the Ecosphere design office for the constructive discussions we had about this work, including the search for land cover and biodiversity data and the location of the study area. We also thank Gilles Vuidel for his technical improvement to the Graphab software by including slope, new habitat patches, and metapatch functions. We are grateful to Damien Roy for his extensive work on the land-cover map combination. This work was funded by the Franche-Comté region. It is a part of the Graphab 2 project managed by USR 3124 MSHE C.N. Ledoux and funded by the French Ministry of Ecology (ITTECOP program). Computations were performed on the supercomputer facilities of the “Mésocentre de calcul de Franche-Comté”.

Supplementary material

10980_2016_373_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1153 kb)


  1. Alexander SM, Waters NM (2000) The effects of highway transportation corridors on wildlife: a case study of Ban ϵ National Park. Transp Res Part C 8:307–320CrossRefGoogle Scholar
  2. Baguette M, Stevens V (2013) Predicting minimum area requirements of butterflies using life-history traits. J Insect Conserv 17:645–652. doi: 10.1007/s10841-013-9548-x CrossRefGoogle Scholar
  3. Barthelmess EL (2014) Spatial distribution of road-kills and factors influencing road mortality for mammals in Northern New York State. Biodivers Conserv 23:2491–2514. doi: 10.1007/s10531-014-0734-2 CrossRefGoogle Scholar
  4. Barthelmess EL, Brooks MS (2010) The influence of body-size and diet on road-kill trends in mammals. Biodivers Conserv 19:1611–1629. doi: 10.1007/s10531-010-9791-3 CrossRefGoogle Scholar
  5. Bissonette JA, Adair W (2008) Restoring habitat permeability to roaded landscapes with isometrically-scaled wildlife crossings. Biol Conserv 141:482–488. doi: 10.1016/j.biocon.2007.10.019 CrossRefGoogle Scholar
  6. Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055CrossRefGoogle Scholar
  7. Brehme CS, Tracey JA, McClenaghan LR, Fisher RN (2013) Permeability of roads to movement of scrubland lizards and small mammals. Conserv Biol 27:710–720. doi: 10.1111/cobi.12081 CrossRefPubMedGoogle Scholar
  8. Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley, New York, pp 2–11Google Scholar
  9. Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2011) An allometric model of home range formation explains the structuring of animal communities exploiting heterogeneous resources. Oikos 120:106–118. doi: 10.1111/j.1600-0706.2010.18556.x CrossRefGoogle Scholar
  10. Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2012) Movement upscaled—the importance of individual foraging movement for community response to habitat loss. Ecography (Cop) 35:436–445. doi: 10.1111/j.1600-0587.2011.06924.x CrossRefGoogle Scholar
  11. Carbone C, Cowlishaw G, Isaac NJB, Rowcliffe JM (2005) How far do animals go? Determinants of day range in mammals. Am Nat 165:290–297. doi: 10.1086/426790 CrossRefPubMedGoogle Scholar
  12. Clauzel C, Girardet X, Foltête J-C (2013) Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté. J Environ Manag 127:125–134. doi: 10.1016/j.jenvman.2013.04.018 CrossRefGoogle Scholar
  13. Clauzel C, Xiqing D, Gongsheng W, Giraudoux P, Li L (2015) Assessing the impact of road developments on connectivity across multiple scales: application to Yunnan snub-nosed monkey conservation. Biol Conserv 192:207–217. doi: 10.1016/j.biocon.2015.09.029 CrossRefGoogle Scholar
  14. Clevenger AP, Waltho N (2000) Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta. Canada. 14:47–56Google Scholar
  15. Cohen Y, Robbins CT, Davitt BB (1978) Oxygen utilization by elk calves during horizontal and vertical locomotion compared to other species. Comp Biochem Physiol Part A Physiol 61:43–48. doi: 10.1016/0300-9629(78)90274-8 CrossRefGoogle Scholar
  16. Coulon A, Guillot G, Cosson J-F, Angibault JMA, Aulagnier S, Cargnelutti B, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679. doi: 10.1111/j.1365-294X.2006.02861.x CrossRefPubMedGoogle Scholar
  17. Cushman SA, Lewis JS, Landguth EL (2014) Why did the bear cross the road? Comparing the performance of multiple resistance surfaces and connectivity modeling methods. Diversity 6:844–854CrossRefGoogle Scholar
  18. Epps C, Palsbøll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029-1038CrossRefGoogle Scholar
  19. Fernandes JP (2000) Landscape ecology and conservation management—evaluation of alternatives in a highway EIA process. Environ Impact Assess Rev 20:665–680CrossRefGoogle Scholar
  20. Foltête J-C, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150. doi: 10.1016/j.landurbplan.2013.12.012 CrossRefGoogle Scholar
  21. Ford AT, Fahrig L (2007) Diet and body size of North American mammal road mortalities. Transp Res Part D 12:498–505. doi: 10.1016/j.trd.2007.07.002 CrossRefGoogle Scholar
  22. Fu W, Liu S, Degloria SD, Dong S, Beazley R (2010) Characterizing the “fragmentation-barrier” effect of road networks on landscape connectivity: a case study in Xishuangbanna, Southwest China. Landsc Urban Plan 95:122–129. doi: 10.1016/j.landurbplan.2009.12.009 CrossRefGoogle Scholar
  23. García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manag 261:154–161. doi: 10.1016/j.foreco.2010.09.047 CrossRefGoogle Scholar
  24. Girardet X, Conruyt-Rogeon G, Foltête J-C (2015) Does regional landscape connectivity influence the location of roe deer roadkill hotspots? Eur J Wildl Res 61:731–742. doi: 10.1007/s10344-015-0950-4 CrossRefGoogle Scholar
  25. Girardet X, Foltête J-C, Clauzel C (2013) Designing a graph-based approach to landscape ecological assessment of linear infrastructures. Environ Impact Assess Rev 42:10–17. doi: 10.1016/j.eiar.2013.03.004 CrossRefGoogle Scholar
  26. González-Gallina A, Benítez-Badillo G, Rojas-Soto OR, Hidalgo-Mihart MG (2013) The small, the forgotten and the dead: highway impact on vertebrates and its implications for mitigation strategies. Biodivers Conserv 22:325–342. doi: 10.1007/s10531-012-0396-x CrossRefGoogle Scholar
  27. Grilo C, Ascensão F, Santos-Reis M, Bissonette JA (2010) Do well-connected landscapes promote road-related mortality? Eur J Wildl Res 57:707–716. doi: 10.1007/s10344-010-0478-6 CrossRefGoogle Scholar
  28. Grilo C, Bissonette JA, Santos-Reis M (2009) Spatial–temporal patterns in Mediterranean carnivore road casualties: consequences for mitigation. Biol Conserv 142:301–313. doi: 10.1016/j.biocon.2008.10.026 CrossRefGoogle Scholar
  29. Gurrutxaga M, Saura S (2013) Prioritizing highway defragmentation locations for restoring landscape connectivity. Environ Conserv 41:157–164. doi: 10.1017/S0376892913000325 CrossRefGoogle Scholar
  30. Hartmann SA, Steyer K, Kraus RHS, Segelbacher G, Nowak C (2013) Potential barriers to gene flow in the endangered European wildcat (Felis silvestris). Conserv Genet 14:413–426. doi: 10.1007/s10592-013-0468-9 CrossRefGoogle Scholar
  31. Hendriks AJ (2007) The power of size: a meta-analysis reveals consistency of allometric regressions. Ecol Model 205:196–208. doi: 10.1016/j.ecolmodel.2007.02.029 CrossRefGoogle Scholar
  32. Hendriks AJ, Willers BJC, Lenders HJR, Leuven RSEW (2009) Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography (Cop) 32:929–942. doi: 10.1111/j.1600-0587.2009.05718.x CrossRefGoogle Scholar
  33. Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121CrossRefGoogle Scholar
  34. Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531. doi: 10.1016/j.baae.2010.06.006 CrossRefGoogle Scholar
  35. Jetz W, Carbone C, Fulford J, Brown JH (2004) The scaling of animal space use. Science 306:266–268. doi: 10.1126/science.1102138 CrossRefPubMedGoogle Scholar
  36. Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Connolly C (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648CrossRefGoogle Scholar
  37. Kie JG, Ager AA, Bowyer RT (2005) Landscape-level movements of North American elk (Cervus elaphus): effects of habitat patch structure and topography. Landscape Ecol 20:289–300. doi: 10.1007/s10980-005-3165-3 CrossRefGoogle Scholar
  38. Klar N, Herrmann M, Kramer-Schadt S (2009) Effects and mitigation of road impacts on individual movement behavior of wildcats. J Wildl Manag 73:631–638. doi: 10.2193/2007-574 CrossRefGoogle Scholar
  39. Kusak J, Huber D, Gomerčić T, Schwaderer G, Gužvica G (2009) The permeability of highway in Gorski kotar (Croatia) for large mammals. Eur J Wildl Res 55:7–21. doi: 10.1007/s10344-008-0208-5 CrossRefGoogle Scholar
  40. Lesbarrères D, Fahrig L (2012) Measures to reduce population fragmentation by roads: what has worked and how do we know? Trends Ecol Evol 27:374–380. doi: 10.1016/j.tree.2012.01.015 CrossRefPubMedGoogle Scholar
  41. Liu S, Deng L, Dong S, Zhao Q, Yang J, Wang C (2014) Landscape connectivity dynamics based on network analysis in the Xishuangbanna Nature Reserve, China. Acta Oecol 55:66–77. doi: 10.1016/j.actao.2013.12.001 CrossRefGoogle Scholar
  42. Loro M, Ortega E, Arce RM, Geneletti D (2015) Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks. Landsc Urban Plan 139:149–162. doi: 10.1016/j.landurbplan.2015.03.006 CrossRefGoogle Scholar
  43. MacArthur RH (1965) Patterns of species diversity. Biol Rev 40:510–533CrossRefGoogle Scholar
  44. Marsh DM, Page RB, Hanlon TJ, Corritone R, Little EC, Seifert DE, Cabe PR (2007) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Genet 9:603–613. doi: 10.1007/s10592-007-9377-0 CrossRefGoogle Scholar
  45. Minor ES, Lookingbill TR (2010) A multiscale network analysis of protected-area connectivity for mammals in the United States. Conserv Biol 24:1549–1558. doi: 10.1111/j.1523-1739.2010.01558.x CrossRefPubMedGoogle Scholar
  46. Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481–483CrossRefGoogle Scholar
  47. Noss F (2007) Focal species for determining connectivity requirements in conservation planning. In: Mannaging and designing landscapes for conservation: moving from perspectives to principles, Blackwell, Oxford, pp 263-279Google Scholar
  48. Ng SJ, Dole JW, Sauvajot RM, Riley SP, Valone TJ (2004) Use of highway undercrossings by wildlife in southern California. Biol Conserv 115:499–507. doi: 10.1016/S0006-3207(03)00166-6 CrossRefGoogle Scholar
  49. Ottaviani D, Cairns SC, Oliverio M, Boitani L (2006) Body mass as a predictive variable of home-range size among Italian mammals and birds. J Zool 269:317–330. doi: 10.1111/j.1469-7998.2006.00060.x CrossRefGoogle Scholar
  50. Paradis E, Baillie SR, Sutherland WJ (2002) Modeling large-scale dispersal distances. Ecol Model 151:279–292. doi: 10.1016/S0304-3800(01)00487-2 CrossRefGoogle Scholar
  51. Pérez-Espona S, Pérez-Barbería FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996. doi: 10.1111/j.1365-294X.2007.03629.x CrossRefPubMedGoogle Scholar
  52. Robinson SJ, Samuel MD, Lopez DL, Shelton P (2012) The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States. Mol Ecol 21:4190–4205. doi: 10.1111/j.1365-294X.2012.05681.x CrossRefPubMedGoogle Scholar
  53. Rothley K (2005) Finding and filling the “cracks” in resistance surfaces for least-cost modeling. Ecol Soc. doi: 10.1007/s00267-005-0258-3 Google Scholar
  54. Rytwinski T, Fahrig L (2011) Reproductive rate and body size predict road impacts on mammal abundance. Ecol Appl 21:589–600CrossRefPubMedGoogle Scholar
  55. Rytwinski T, Fahrig L (2012) Do species life history traits explain population responses to roads? A meta-analysis. Biol Conserv 147:87–98. doi: 10.1016/j.biocon.2011.11.023 CrossRefGoogle Scholar
  56. Santini L, Di Marco M, Visconti P, Baisero D, Boitani L, Rondinini C (2013) Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24:181–186. doi: 10.4404/hystrix-24.2-8746 Google Scholar
  57. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103. doi: 10.1016/j.landurbplan.2007.03.005 CrossRefGoogle Scholar
  58. Schoonover JE, Lockaby BG, Pan S (2005) Changes in chemical and physical properties of stream water across an urban-rural gradient in western Georgia. Urban Ecosyst 8:107–124CrossRefGoogle Scholar
  59. Schuster R, Römer H, Germain RR (2013) Using multi-scale distribution and movement effects along a montane highway to identify optimal crossing locations for a large-bodied mammal community. PeerJ 1:e189. doi: 10.7717/peerj.189 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013) Energy landscapes shape animal movement ecology. Am Nat 182:298–312. doi: 10.1086/671257 CrossRefPubMedGoogle Scholar
  61. Snyder GK, Carello CA (2008) Body mass and the energy efficiency of locomotion: lessons from incline running. Comp Biochem Physiol A 150:144–150. doi: 10.1016/j.cbpa.2006.09.026 CrossRefGoogle Scholar
  62. Sutherland G, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4:16Google Scholar
  63. Taylor CR, Caldwell SL, Rowntree VJ (1972) Running up and down hills: some consequences of size. Science 178:1096–1097CrossRefPubMedGoogle Scholar
  64. Van Der Ree R, Heinze D, Mccarthy M, Mansergh I (2009) Wildlife tunnel enhances population viability. Ecol Soc 14:7Google Scholar
  65. Vasas V, Magura T, Jordán F, Tóthmérész B (2009) Graph theory in action: evaluating planned highway tracks based on connectivity measures. Landscape Ecol 24:581–586. doi: 10.1007/s10980-009-9346-8 CrossRefGoogle Scholar
  66. Verboom J, Foppen R, Chardon P, Opdam P, Luttikhuizen P (2001) Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biol Conserv 100:89–101. doi: 10.1016/S0006-3207(00)00210-X CrossRefGoogle Scholar
  67. Vos CC, Verboom J, Opdam PF, Ter Braak CJ (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41. doi: 10.1086/317004 CrossRefPubMedGoogle Scholar
  68. Wall J, Douglas-Hamilton I, Vollrath F (2006) Correspondences elephants avoid costly mountaineering. Curr Biol 16:527–529CrossRefGoogle Scholar
  69. Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95:181–191. doi: 10.1016/j.landurbplan.2010.01.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Anne Mimet
    • 1
    Email author
  • Céline Clauzel
    • 1
    • 2
  • Jean-Christophe Foltête
    • 1
  1. 1.ThéMA, CNRS, University Bourgogne Franche-ComtéBesançon CedexFrance
  2. 2.LADYSS, UMR 7533 CNRS. Sorbonne Paris CitéUniversity Paris-DiderotParisFrance

Personalised recommendations