Landscape Ecology

, Volume 31, Issue 7, pp 1629–1641 | Cite as

Butterfly dispersal in farmland: a replicated landscape genetics study on the meadow brown butterfly (Maniola jurtina)

  • Anne Villemey
  • William E. Peterman
  • Murielle Richard
  • Annie Ouin
  • Inge van Halder
  • Virginie M. Stevens
  • Michel Baguette
  • Philip Roche
  • Frédéric Archaux
Research Article

Abstract

Context

Anthropogenic activities readily result in the fragmentation of habitats such that species persistence increasingly depends on their ability to disperse. However, landscape features that enhance or limit individual dispersal are often poorly understood. Landscape genetics has recently provided innovative solutions to evaluate landscape resistance to dispersal.

Objectives

We studied the dispersal of the common meadow brown butterfly, Maniola jurtina, in agricultural landscapes, using a replicated study design and rigorous statistical analyses. Based on existing behavioral and life history research, we hypothesized that the meadow brown would preferentially disperse through its preferred grassy habitats (meadows and road verges) and avoid dispersing through woodlands and the agricultural matrix.

Methods

Samples were collected in 18 study landscapes of 5 × 5 km in three contrasting agricultural French regions. Using circuit theory, least cost path and transect-based methods, we analyzed the effect of the landscape on gene flow separately for each sex.

Results

Analysis of 1681 samples with 6 microsatellites loci revealed that landscape features weakly influence meadow brown butterfly gene flow. Gene flow in both sexes appeared to be weakly limited by forests and arable lands, whereas grasslands and grassy linear elements (road verges) were more likely to enhance gene flow.

Conclusion

Our results are consistent with the hypothesis of greater dispersal through landscape elements that are most similar to suitable habitat. Our spatially replicated landscape genetics study allowed us to detect subtle landscape effects on butterfly gene flow, and these findings were reinforced by consistent results across analytical methods.

Keywords

Agricultural landscape Gene flow Landscape resistance Lepidoptera Linear mixed-effect model Movement Spatial replication 

Supplementary material

10980_2016_348_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 36 kb)

References

  1. Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5(4):384–387CrossRefGoogle Scholar
  2. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247CrossRefGoogle Scholar
  3. Aviron S, Kindlmann P, Burel F (2007) Conservation of butterfly populations in dynamic landscapes: the role of farming practices and landscape mosaic. Ecol Model 205(1):135–145CrossRefGoogle Scholar
  4. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326CrossRefPubMedGoogle Scholar
  5. Bartoń K (2013) MuMIn: multi-model inference, R package version 1.9.13Google Scholar
  6. Brakefield PM (1982) Ecological studies on the butterfly Maniola jurtina in Britain. I. Adult behaviour, microdistribution and dispersal. J Anim Ecol 51(3):713–726CrossRefGoogle Scholar
  7. Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21(6):877–889CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631CrossRefPubMedGoogle Scholar
  10. Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. JABES 7(3):361–372CrossRefGoogle Scholar
  11. Conradt L, Roper TJ (2006) Nonrandom movement behavior at habitat boundaries in two butterfly species: implications for dispersal. Ecology 87(1):125–132CrossRefPubMedGoogle Scholar
  12. Cormont A, Malinowska AH, Kostenko O, Radchuk V, Hemerik L, WallisDeVries MF, Verboom J (2011) Effect of local weather on butterfly flight behaviour, movement, and colonization: significance for dispersal under climate change. Biodivers Conserv 20(3):483–503CrossRefGoogle Scholar
  13. Coster SS, Babbitt KJ, Cooper A, Kovach AI (2015) Limited influence of local and landscape factors on fine-scale gene flow in two pond-breeding amphibians. Mol Ecol 24(4):742–758CrossRefPubMedGoogle Scholar
  14. Cushman SA, Shirk AJ, Landguth EL (2013) Landscape genetics and limiting factors. Conserv Genet 14(2):263–274CrossRefGoogle Scholar
  15. Delattre T, Baguette M, Burel F, Stevens VM, Quénol H, Vernon P (2013a) Interactive effects of landscape and weather on dispersal. Oikos 122(11):1576–1585CrossRefGoogle Scholar
  16. Delattre T, Vernon P, Burel F (2013b) An agri-environmental scheme enhances butterfly dispersal in European agricultural landscapes. Agric Ecosyst Environ 166:102–109CrossRefGoogle Scholar
  17. Dickson BG, Jenness JS, Beier P (2005) Influence of vegetation, topography, and roads on cougar movement in southern California. J Wildl Manag 69(1):264–276CrossRefGoogle Scholar
  18. Ducatez S, Humeau A, Congretel M, Fréville H, Baguette M (2014) Butterfly species differing in mobility show different structures of dispersal-related syndromes in the same fragmented landscape. Ecography 37(4):378–389CrossRefGoogle Scholar
  19. EEA (2013) The European Grassland Butterfly Indicator: 1990–2011. European Environment Agency Technical ReportGoogle Scholar
  20. Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L (2011) Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12(1):41–50CrossRefGoogle Scholar
  21. Engler JO, Balkenhol N, Filz KJ, Habel JC, Rödder D (2014) Comparative landscape genetics of three closely related sympatric hesperid butterflies with diverging ecological traits. PLoS ONE 9(9):e106526CrossRefPubMedPubMedCentralGoogle Scholar
  22. Evans JS, Oakleaf J, Cushman SA, Theobald D (2014) An ArcGIS toolbox for surface gradient and geomorphometric modeling, version 2.0-0Google Scholar
  23. Eycott AE, Stewart GB, Buyung-Ali LM, Bowler DE, Watts K, Pullin AS (2012) A meta-analysis on the impact of different matrix structures on species movement rates. Landscape Ecol 27(9):1263–1278CrossRefGoogle Scholar
  24. Graves TA, Wasserman TN, Ribeiro MC, Landguth EL, Spear SF, Balkenhol N, Higgins CB, Fortin M-J, Cushman SA, Waits LP (2012) The influence of landscape characteristics and home-range size on the quantification of landscape–genetics relationships. Landscape Ecol 27(2):253–266CrossRefGoogle Scholar
  25. Grill A, Schtickzelle N, Cleary DFR, Nève G, Menken SBJ (2006) Ecological differentiation between the Sardinian endemic Maniola nurag and the pan-European M. jurtina. Biol J Linn Soc 89(4):561–574CrossRefGoogle Scholar
  26. Habel JC, Rödder D, Lens L, Schmitt T (2013) The genetic signature of ecologically different grassland Lepidopterans. Biodivers Conserv 22(10):2401–2411CrossRefGoogle Scholar
  27. Hahn T, Kettle CJ, Ghazoul J, Hennig EI, Pluess AR (2013) Landscape composition has limited impact on local genetic structure in mountain clover Trifolium montanum L. J Hered 104(6):842–852CrossRefPubMedGoogle Scholar
  28. Harrisson KA, Pavlova A, Amos JN, Takeuchi N, Lill A, Radford JQ, Sunnucks P (2012) Fine-scale effects of habitat loss and fragmentation despite large-scale gene flow for some regionally declining woodland bird species. Landscape Ecol 27(6):813–827CrossRefGoogle Scholar
  29. Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20(4):692–705CrossRefPubMedGoogle Scholar
  30. Kindlmann P, Aviron S, Burel F (2005) When is landscape matrix important for determining animal fluxes between resource patches? Ecol Complex 2(2):150–158CrossRefGoogle Scholar
  31. Kindlmann P, Aviron S, Burel F, Ouin A (2004) Can the assumption of a non-random search improve our prediction of butterfly fluxes between resource patches? Ecol Entomol 29(4):447–456CrossRefGoogle Scholar
  32. Koen EL, Bowman J, Walpole AA (2012) The effect of cost surface parameterization on landscape resistance estimates. Mol Ecol Resour 12(4):686–696CrossRefPubMedGoogle Scholar
  33. Koen EL, Garroway CJ, Wilson PJ, Bowman J (2010) The effect of map boundary on estimates of landscape resistance to animal movement. PLoS ONE 5(7):e11785CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14(2):415–424CrossRefPubMedGoogle Scholar
  35. Landguth EL, Schwartz MK (2014) Evaluating sample allocation and effort in detecting population differentiation for discrete and continuously distributed individuals. Conserv Genet 15(4):981–992CrossRefGoogle Scholar
  36. Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28(10):614–621CrossRefPubMedGoogle Scholar
  37. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13(4):603–606CrossRefGoogle Scholar
  38. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724CrossRefPubMedGoogle Scholar
  39. Meglecz E, Petenian F, Danchin E, D’Acier AC, Rasplus J-Y, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13(6):1693–1700CrossRefPubMedGoogle Scholar
  40. Meyer S, Wesche K, Hans J, Leuschner C, Albach DC (2015) Landscape complexity has limited effects on the genetic structure of two arable plant species, Adonis aestivalis and Consolida regalis. Weed Res 55(4):406–415CrossRefGoogle Scholar
  41. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142CrossRefGoogle Scholar
  42. Nowicki P, Vrabec V, Binzenhöfer B, Feil J, Zakšek B, Hovestadt T, Settele J (2014) Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landscape Ecol 29(3):401–412CrossRefGoogle Scholar
  43. Öckinger E, Smith HG (2007) Asymmetric dispersal and survival indicate population sources for grassland butterflies in agricultural landscapes. Ecography 30(2):288–298CrossRefGoogle Scholar
  44. Ouin A, Martin M, Burel F (2008) Agricultural landscape connectivity for the meadow brown butterfly (Maniola jurtina). Agric Ecosyst Environ 124(3):193–199CrossRefGoogle Scholar
  45. Palmer SCF, Coulon A, Travis JMJ (2014) Inter-individual variability in dispersal behaviours impacts connectivity estimates. Oikos 123(8):923–932CrossRefGoogle Scholar
  46. Pavlacky DC Jr, Goldizen AW, Prentis PJ, Nicholls JA, Lowe AJ (2009) A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Mol Ecol 18(14):2945–2960CrossRefPubMedGoogle Scholar
  47. Peterman WE (2014) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. bioRxiv. doi:10.1101/007575
  48. Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23(10):2402–2413CrossRefPubMedGoogle Scholar
  49. Petren K (2013) The evolution of landscape genetics. Evolution 67(12):3383–3385CrossRefPubMedGoogle Scholar
  50. Phillipsen IC, Kirk EH, Bogan MT, Mims MC, Olden JD, Lytle DA (2015) Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Mol Ecol 24(1):54–69CrossRefPubMedGoogle Scholar
  51. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) Linear and nonlinear mixed effects models. R package version 3.1-120Google Scholar
  52. Prunier J, Kaufmann B, Léna J-P, Fenet S, Pompanon F, Joly P (2014) A 40-year-old divided highway does not prevent gene flow in the alpine newt Ichthyosaura alpestris. Conserv Genet 15(2):453–468CrossRefGoogle Scholar
  53. Prunier JG, Kaufmann B, Fenet S, Picard D, Pompanon F, Joly P, Lena JP (2013) Optimizing the trade-off between spatial and genetic sampling efforts in patchy populations: towards a better assessment of functional connectivity using an individual-based sampling scheme. Mol Ecol 22(22):5516–5530CrossRefPubMedGoogle Scholar
  54. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  55. Rayfield B, Fortin M-J, Fall A (2010) The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecol 25(4):519–532CrossRefGoogle Scholar
  56. Richard M, Villemey A, Stevens VM, Blanvillain G, Dardenne S, Baguette M (2015) Fifteen new polymorphic microsatellite loci for the meadow brown butterfly, Maniola jurtina. Biochem Syst Ecol 63:165–169CrossRefGoogle Scholar
  57. Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5(1–4):23–27Google Scholar
  58. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38(1):231–253CrossRefGoogle Scholar
  59. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106CrossRefPubMedGoogle Scholar
  60. Schmitt T, Röber S, Seitz A (2005) Is the last glaciation the only relevant event for the present genetic population structure of the meadow brown butterfly Maniola jurtina (Lepidoptera: Nymphalidae)? Biol J Linn Soc 85(4):419–431CrossRefGoogle Scholar
  61. Schneider C (2003) The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol Entomol 28(2):252–256CrossRefGoogle Scholar
  62. Schneider C, Dover J, Fry GLA (2003) Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecol Entomol 28(2):219–227CrossRefGoogle Scholar
  63. Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK, MacKelvey K, Allendorf FW, Luikart G (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20(6):1092–1107CrossRefGoogle Scholar
  64. Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82(5):561–573CrossRefPubMedGoogle Scholar
  65. Spear SF, Balkenhol N, Fortin MJ, MacRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19(17):3576–3591CrossRefPubMedGoogle Scholar
  66. Stevens VM, Trochet A, Blanchet S, Moulherat S, Clobert J, Baguette M (2013) Dispersal syndromes and the use of life-histories to predict dispersal. Evol Appl 6(4):630–642CrossRefPubMedPubMedCentralGoogle Scholar
  67. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68(3):571–573CrossRefGoogle Scholar
  68. van Etten J (2014) gdistance: distances and routes on geographical grids, R package version 1.1-5Google Scholar
  69. van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21(16):4010–4023CrossRefGoogle Scholar
  70. Watts AG, Schlichting PE, Billerman SM, Jesmer BR, Micheletti S, Fortin M-J, Funk WC, Hapeman P, Muths E, Murphy MA (2015) How spatio-temporal habitat connectivity affects amphibian genetic structure. Front Genet 6:1–13CrossRefGoogle Scholar
  71. Zeller KA, MacGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27(6):777–797CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Anne Villemey
    • 1
  • William E. Peterman
    • 2
  • Murielle Richard
    • 3
  • Annie Ouin
    • 4
    • 5
  • Inge van Halder
    • 6
    • 7
  • Virginie M. Stevens
    • 3
  • Michel Baguette
    • 3
    • 8
  • Philip Roche
    • 9
  • Frédéric Archaux
    • 1
  1. 1.Institut National de Recherche en Sciences et Techniques pour l’Environnement et l’Agriculture, UR EFNONogent-sur-VernissonFrance
  2. 2.School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA
  3. 3.Station d’Ecologie Théorique et Expérimentale, CNRS, UPSMoulisFrance
  4. 4.INRA Toulouse, UMR DYNAFORCastanet TolosanFrance
  5. 5.INP-ENSAT, UMR DYNAFORUniversity of ToulouseCastanet TolosanFrance
  6. 6.INRA, UMR 1202 BIOGECOCestasFrance
  7. 7.UMR 1202 BIOGECOUniversity of BordeauxPessacFrance
  8. 8.Muséum National d’Histoire Naturelle, UMR 7205 Institut de Systématique, Evolution, BiodiversitéParisFrance
  9. 9.Institut National de Recherche en Sciences et Techniques pour l’Environnement et l’Agriculture, UR EMAXAix-en-Provence Cedex 5France

Personalised recommendations