Landscape Ecology

, Volume 31, Issue 7, pp 1523–1535 | Cite as

Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods

  • Rachel E. MallingerEmail author
  • Jason Gibbs
  • Claudio Gratton
Research Article



Anthropogenic landscape simplification and natural habitat loss can negatively affect wild bees. Alternatively, anthropogenic land-use change may diversify landscapes, creating complementary habitats that maintain overall resource continuity and diversity.


We examined the effects of landscape composition, including land-cover diversity and percent semi-natural habitat, on wild bee abundance and species richness within apples, a pollinator-dependent crop. We also explored whether different habitats within diverse landscapes can provide complementary floral resources for bees across space and time.


We sampled bees during apple bloom over 2 years within 35 orchards varying in surrounding landscape diversity and percent woodland (the dominant semi-natural habitat) at 1 km radii. To assess habitat complementarity in resource diversity and temporal continuity, we sampled flowers and bees within four unique habitats, including orchards, woodlands, semi-natural grasslands, and annual croplands, over three periods from April–June.


Surrounding landscape diversity positively affected both wild bee abundance and richness within orchards during bloom. Habitats in diverse landscapes had different flower communities with varying phenologies; flowers were most abundant within orchards and woodlands in mid-spring, but then declined over time, while flowers within grasslands marginally increased throughout spring. Furthermore, bee communities were significantly different between the closed-canopy habitats, orchards and woodlands, and the open habitats, grasslands and annual croplands.


Our results suggest that diverse landscapes, such as ones with both open (grassland) and closed (woodland) semi-natural habitats, support spring wild bees by providing flowers throughout the entire foraging period and diverse niches to meet different species’ requirements.


Pollinator Native bee Land-use change Landscape structure Habitat fragmentation Apples 



The authors would like to thank the Ceres Foundation and the United States Department of Agriculture Specialty Crop Block Grant Program for funding, Mike Arduser for help with some bee identifications, apple farmers in southern Wisconsin for participating in this study, and Kiley Friedrich for assistance in the field.

Supplementary material

10980_2015_332_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
10980_2015_332_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 12 kb)
10980_2015_332_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 19 kb)
10980_2015_332_MOESM4_ESM.docx (18 kb)
Supplementary material 4 (DOCX 17 kb)


  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070 Google Scholar
  2. Anderson RC, Schelfhout S (1980) Phenological patterns among tallgrass prairie plants and their implications for pollinator competition. Am Midl Nat 104:253–263. doi: 10.2307/2424864 CrossRefGoogle Scholar
  3. Andersson GKS, Birkhofer K, Rundlöf M, Smith HG (2013) Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities. Basic Appl Ecol 14:540–546. doi: 10.1016/j.baae.2013.08.003 CrossRefGoogle Scholar
  4. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi: 10.1126/science.1127863 CrossRefPubMedGoogle Scholar
  5. Blitzer EJ, Dormann CF, Holzschuh A, Klein AM, Rand TA, Tscharntke T (2012) Spillover of functionally important organisms between managed and natural habitats. Agri Ecosyst Environ 146:34–43. doi: 10.1016/j.agee.2011.09.005 CrossRefGoogle Scholar
  6. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615. doi: 10.1126/science.1232728 CrossRefPubMedGoogle Scholar
  7. Burnham KP, Anderson DR (eds) (2004) Model selection and multimodel inference. Springer, New York, NYGoogle Scholar
  8. Cane JH, Minckley RL, Kervin LJ (2000) Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: Pitfalls of pan-Trapping. J Kansas Entomol Soc 73:225–231Google Scholar
  9. Carvalheiro LG, Seymour CL, Veldtman R, Nicolson SW (2010) Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J Appl Ecol 47:810–820. doi: 10.1111/j.1365-2664.2010.01829.x CrossRefGoogle Scholar
  10. Colla SR, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers Conserv 17:1379–1391. doi: 10.1007/s10531-008-9340-5 CrossRefGoogle Scholar
  11. Darvill B, Knight ME, Goulson D (2004) Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107:471–478CrossRefGoogle Scholar
  12. Davis LR, LaBerge WE (1975) The Nest Biology of the Bee Andrena (Ptilandrena) Erigeniae Robertson (Hymenoptera: Andrenidae). Illinois Natural History Survey. University of Illinois Urbana-Champaign, UrbanaCrossRefGoogle Scholar
  13. De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. doi: 10.1890/08-1823.1 CrossRefPubMedGoogle Scholar
  14. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684. doi: 10.1111/j.1600-0706.2010.18334.x CrossRefGoogle Scholar
  15. Droege S, Tepedino VJ, Lebuhn G, Link W, Minckley RL, Chen Q, Conrad C (2010) Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conserv Diver 3:15–23. doi: 10.1111/j.1752-4598.2009.00074.x CrossRefGoogle Scholar
  16. Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305. doi: 10.1016/j.biocon.2010.09.007 CrossRefGoogle Scholar
  17. ESRI (Environmental Systems Resource Institute) (2009) ArcMap 9.2. ESRI. Redlands, CaliforniaGoogle Scholar
  18. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  19. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. doi: 10.1111/j.1461-0248.2010.01559.x CrossRefPubMedGoogle Scholar
  20. Flick T, Feagan S, Fahrig L (2012) Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agri Ecosyst Environ 156:123–133. doi: 10.1016/j.agee.2012.05.006 CrossRefGoogle Scholar
  21. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 CrossRefPubMedGoogle Scholar
  22. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764. doi: 10.1046/j.1365-2656.2002.00641.x CrossRefGoogle Scholar
  23. Gibbs J (2011) Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073:1–216Google Scholar
  24. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596CrossRefPubMedGoogle Scholar
  25. Grundel R, Jean RP, Frohnapple KJ, Glowacki GA, Scott PE, Pavlovic NB (2010) Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient. Ecol Appl 20:1678–1692CrossRefPubMedGoogle Scholar
  26. Hagen M, Wikelski M, Kissling WD (2011) Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS ONE 6:e19997. doi: 10.1371/journal.pone.0019997 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12:321–334. doi: 10.2307/3060944 Google Scholar
  28. Hines HM, Hendrix SD (2005) Bumble bee (Hymenoptera: Apidae) diversity and abundance in tallgrass prairie patches: effects of local and landscape floral resources. Environ Entomol 34:1477–1484. doi: 10.1603/0046-225X-34.6.1477 CrossRefGoogle Scholar
  29. Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J Appl Ecol 44:41–49CrossRefGoogle Scholar
  30. Klein AM, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014. doi: 10.1046/j.1523-1739.2002.00499.x CrossRefGoogle Scholar
  31. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900. doi: 10.1046/j.1365-2699.2003.00878.x CrossRefGoogle Scholar
  32. Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119. doi: 10.1111/j.1461-0248.2004.00662.x CrossRefGoogle Scholar
  33. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. PNAS 99:16812–16816. doi: 10.1073/pnas.262413599 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7:e29268. doi: 10.1371/journal.pone.0029268 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lonsdorf E, Kremen C, Ricketts T, Winfree R, Williams N, Greenleaf S (2009) Modelling pollination services across agricultural landscapes. Ann Bot-London 103:1589–1600. doi: 10.1093/aob/mcp069 CrossRefGoogle Scholar
  36. Mallinger R (2015) Cultivating alternative apple pollinators: examining the contribution of wild bees to crop pollination, and the factors that influence their abundance and diversity In Wisconsin’s Orchards. Dissertation, The University of Wisconsin-MadisonGoogle Scholar
  37. Mallinger RE, Gratton C (2015) Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J Appl Ecol 52:323–330. doi: 10.1111/1365-2664.12377 CrossRefGoogle Scholar
  38. Mallinger RE, Werts P, Gratton C (2015) Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth. J Insect Conserv 19:999–1010. doi: 10.1007/s10841-015-9816-z CrossRefGoogle Scholar
  39. Mandelik Y, Winfree R, Neeson T, Kremen C (2012) Complementary habitat use by wild bees in agro-natural landscapes. Ecol Appl 22:1535–1546. doi: 10.1890/11-1299.1 CrossRefPubMedGoogle Scholar
  40. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  41. McCracken ME, Woodcock BA, Lobley M, Pywell RF, Saratsi E, Swetnam RD, Mortimer SR, Harris SJ, Winter M, Hinsley S, Bullock JM (2015) Social and ecological drivers of success in agri-environment schemes: the roles of farmers and environmental context. J Appl Ecol 52:696–705. doi: 10.1111/1365-2664.12412 CrossRefGoogle Scholar
  42. Meehan TD, Werling BP, Landis DA, Gratton C (2012) Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios. PLoS ONE 7:e41728. doi: 10.1371/journal.pone.0041728 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Michener CD (2000) The Bees of the World. JHU Press, Baltimore MDGoogle Scholar
  44. Mueller UG (1996) Life history and social evolution of the primitively eusocial bee Augochlorella striata (Hymenoptera: Halictidae). J Kansas Entomol Soc 69:116–138Google Scholar
  45. National Research Council (2007) Status of Pollinators in North America. The National Academies Press, Washington D.CGoogle Scholar
  46. Oliver T, Roy DB, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13:473–484. doi: 10.1111/j.1461-0248.2010.01441.x CrossRefPubMedGoogle Scholar
  47. Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD, Reynolds DR, Edwards AS (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533. doi: 10.1046/j.1365-2664.1999.00428.x CrossRefGoogle Scholar
  48. Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA (2008) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77:406–415. doi: 10.1111/j.1365-2656.2007.01333.x CrossRefPubMedGoogle Scholar
  49. Pabalan N, Davey KG, Packer L (2000) Escalation of aggressive interactions during staged encounters in Halictus ligatus Say (Hymenoptera: Halictidae), with a comparison of circle tube behaviors with other Halictine species. J Insect Behav 13:627–650. doi: 10.1023/A:1007868725551 CrossRefGoogle Scholar
  50. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  51. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515. doi: 10.1111/j.1461-0248.2008.01157.x CrossRefPubMedGoogle Scholar
  52. Riedinger V, Mitesser O, Hovestadt T, Steffan-Dewenter I, Holzschuh A (2015) Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology 96:1351–1360. doi: 10.1890/14-1124.1 CrossRefPubMedGoogle Scholar
  53. Roulston TH, Smith SA, Brewster AL (2007) A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) fauna. J Kansas Entomol Soc 80:179–181. doi: 10.2317/0022-8567(2007)80[179:ACOPTA]2.0.CO;2 CrossRefGoogle Scholar
  54. Shanahan DF, Miller C, Possingham HP, Fuller RA (2011) The influence of patch area and connectivity on avian communities in urban revegetation. Biol Conserv 144:722–729. doi: 10.1016/j.biocon.2010.10.014 CrossRefGoogle Scholar
  55. Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64. doi: 10.1016/j.biocon.2014.02.015 CrossRefGoogle Scholar
  56. Steffan-Dewenter I (2002) Landscape context affects trap-nesting bees, wasps, and their natural enemies. Ecol Entomol 27:631–637. doi: 10.1046/j.1365-2311.2002.00437.x CrossRefGoogle Scholar
  57. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  58. Watson JC, Wolf AT, Ascher JS (2011) Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards. Environ Entomol 40:621–632. doi: 10.1603/EN10231 CrossRefPubMedGoogle Scholar
  59. Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SP, Szentgyörgyi H, Tscheulin T, Vaissière BE (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671CrossRefGoogle Scholar
  60. Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965. doi: 10.1046/j.1461-0248.2003.00523.x CrossRefGoogle Scholar
  61. Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076. doi: 10.1890/08-1245.1 CrossRefPubMedGoogle Scholar
  62. Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223. doi: 10.1111/j.1523-1739.2006.00574.x CrossRefPubMedGoogle Scholar
  63. Woodcock BA, Harrower C, Redhead J, Edwards M, Vanbergen AJ, Heard MS, Roy DB, Pywell RF (2014) National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key UK arable crops. J Appl Ecol 51:142–151. doi: 10.1111/1365-2664.12171 CrossRefGoogle Scholar
  64. Yeager LA, Layman CA, Allgeier JE (2011) Effects of habitat heterogeneity at multiple spatial scales on fish community assembly. Oecologia 167:157–168. doi: 10.1007/s00442-011-1959-3 CrossRefPubMedGoogle Scholar
  65. Zurbuchen A, Cheesman S, Klaiber J, Müller A, Hein S, Dorn S (2010) Long foraging distances impose high costs on offspring production in solitary bees. J Anim Ecol 79:674–681. doi: 10.1111/j.1365-2656.2010.01675.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2015

Authors and Affiliations

  • Rachel E. Mallinger
    • 1
    • 3
    Email author
  • Jason Gibbs
    • 2
  • Claudio Gratton
    • 1
  1. 1.Rachel Mallinger, Claudio GrattonUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Michigan State UniversityEast LansingUSA
  3. 3.USDA-ARSFargoUSA

Personalised recommendations