Landscape Ecology

, Volume 31, Issue 4, pp 775–789 | Cite as

Empirical evaluation of the strength of interspecific competition in shaping small mammal communities in fragmented landscapes

  • Giulia SozioEmail author
  • Alessio Mortelliti
Research Article



Theory predicts that habitat loss and fragmentation may have drastic consequences on species’ interactions. To date, however, little empirical evidence exists on the strength of interspecific competition in shaping animal communities in fragmented landscapes.


Our aim was to measure the degree of ongoing competitive interference between species in fragmented landscapes. Our model system was the community of ground-dwelling rodents in deciduous woodlands in central Italy, composed of a habitat generalist species (Apodemus sylvaticus) and two forest specialists (Apodemus flavicollis and Myodes glareolus). Our objectives were to test whether species were segregated among forest patches and whether spatial segregation was determined by interspecific competition or habitat and resource availability.


We surveyed the populations inhabiting 29 woodland patches in a highly fragmented landscape using a capture-mark-recapture protocol, capturing >4500 individuals. First we modelled species’ distribution as a function of habitat, resource availability and landscape variables. The second stage of our analyses involved measuring the response of vital rate parameters (body mass, reproduction, survival, recruitment, population density) to competitor density.


The relative distribution of species reflected a spatial segregation of habitat generalists and specialists according to habitat quality, cover and connectivity. Interspecific competition mainly affected individual level vital rates, whereas we found no substantial effects at the population level.


Competitive exclusion of specialist species by generalist species was occurring. However, when compared to other factors such as habitat connectivity and resource availability, interspecific competition played a relatively minor role in shaping the studied community.


Agricultural matrix Hedgerows Landscape mosaic Oak forest Patch size Rodents 



Two anonymous reviewers provided valuable and constructive feedback on our manuscript. We thank all students that helped us with fieldwork. Molecular analyses for the discrimination of Apodemus spp. were carried out by GS, Simona Prete and Emanuela Solano. We also thank Ben Scheele, Jennnifer Pierson e Ayesha Tulloch (The Australian National University) and Marilena Ronzan for language revision. GS was funded by a Ph.D. grant awarded by the University of Rome “La Sapienza”, AM was funded by the CFS (Corpo Forestale dello Stato) through the University of Rome “La Sapienza”.

Supplementary material

10980_2015_286_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 39 kb)


  1. Abt KF, Bock WF (1998) Seasonal variations of diet composition in farmland field mice Apodemus spp. and bank voles Clethrionomys glareolus. Acta Theriol 43:379–389CrossRefGoogle Scholar
  2. Abu Baker MA, Brown JS (2014) Foraging in space and time structure an African small mammal community. Oecologia 175:521–535. doi: 10.1007/s00442-014-2926-6 CrossRefPubMedGoogle Scholar
  3. Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122. doi: 10.1046/j.1461-0248.2003.00530.x CrossRefGoogle Scholar
  4. Ambrose HW (1972) Effect of habitat familiarity and toe-clipping on rate of owl predation in Microtus pennsylvanicus. J Mammal 53:909–912. doi: 10.2307/1379235 CrossRefGoogle Scholar
  5. Amori G, Contoli L, Nappi A (2008) Fauna d’Italia: Mammalia II. Edizioni Calderini de Il Sole 24 ORE Edagricole, BolognaGoogle Scholar
  6. Amori G, Cristaldi M, Fanfani A, Solida L, Luiselli L (2010) Ecological coexistence of low-density populations of Apodemus sylvaticus and A. flavicollis (Mammalia: Rodentia). Rend Lincei 21:171–182. doi: 10.1007/s12210-010-0076-2 CrossRefGoogle Scholar
  7. Amstrup S, McDonald L, Manly B (2006) Handbook of capture-recapture analysis. Princeton University Press, Princeton, NJGoogle Scholar
  8. Andrzejewski R, Olszewski JL (1963) Social behaviour and interspecific relations in Apodemus flavicollis (Melchior, 1834) and Clethrionomys glareolus (Schreber, 1780). Acta Theriol 7:155–168CrossRefGoogle Scholar
  9. Boeye J, Kubisch A, Bonte D (2014) Habitat structure mediates spatial segregation and therefore coexistence. Landscape Ecol 29:593–604. doi: 10.1007/s10980-014-0010-6 CrossRefGoogle Scholar
  10. Bowers MA, Dooley JLJ (1999) A controlled, hierarchical study of habitat fragmentation: responses at the individual, patch, and landscape scale. Landscape Ecol 14:381–389CrossRefGoogle Scholar
  11. Braschler B, Baur B (2005) Experimental small-scale grassland fragmentation alters competitive interactions among ant species. Oecologia 143:291–300. doi: 10.1007/s00442-004-1778-x CrossRefPubMedGoogle Scholar
  12. Braude S, Ciszek D (1998) Survival of naked mole-rats marked by implantable transponders and toe-clipping. J Mammal 79:360–363. doi: 10.2307/1382873 CrossRefGoogle Scholar
  13. Brown WP (2007) Body mass, habitat generality, and avian community composition in forest remnants. J Biogeogr 34:2168–2181. doi: 10.1111/j.1365-2699.2007.01766.x CrossRefGoogle Scholar
  14. Brunner JL, Duerr S, Keesing F, Killilea M, Vuong H, Ostfeld RS (2013) An experimental test of competition among, mice, chipmunks, and squirrels in deciduous forest fragments. PLoS One 8:e66798. doi: 10.1371/journal.pone.0066798 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buchalczyk T, Olszewski JL (1971) Behavioural response of forest rodents against trap and bait. Acta Theriol 16:233–239Google Scholar
  16. Buesching CD, Newman C, Twell R, Macdonald DW (2008) Reasons for arboreality in wood mice Apodemus sylvaticus and bank voles Myodes glareolus. Mamm Biol 73:318–324. doi: 10.1016/j.mambio.2007.09.009 Google Scholar
  17. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  18. Canova L (1993) Resource partitioning between the bank vole Clethrionomys glareolus and the wood mouse Apodemus sylvaticus in woodland habitats. Bolletino di Zool 60:193–198. doi: 10.1080/11250009309355809 CrossRefGoogle Scholar
  19. Capizzi D, Luiselli L (1996) Ecological relationships between small mammals and age of coppice in an oak-mixed forest in central Italy. Rev Eco (Terre Vie) 51:277–291Google Scholar
  20. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Evol Syst 31:343–366CrossRefGoogle Scholar
  21. Cihakova J, Frynta D (1996) Intraspecific and interspecific behavioural interactions in the wood mouse (Apodemus sylvaticus) and the yellow-necked mouse (Apodemus flavicollis) in a neutral cage. Folia Zool 45:105–113Google Scholar
  22. Darmon G, Calenge C, Loison A, Jullien JM, Maillard D, Lopez JF (2012) Spatial distribution and habitat selection in coexisting species of mountain ungulates. Ecography 35:44–53. doi: 10.1111/j.1600-0587.2011.06664.x CrossRefGoogle Scholar
  23. Dooley J, Bowers M (1998) Demographic responses to habitat fragmentation: experimental tests at the landscape and patch scale. Ecology 79:969–980CrossRefGoogle Scholar
  24. Dugger KM, Anthony RG, Andrews LS (2011) Transient dynamics of invasive competition: barred owls, spotted owls, habitat, and the demons of competition present. Ecol Appl 21:2459–2468CrossRefPubMedGoogle Scholar
  25. Ecke F, Löfgren O, Sörlin D (2002) Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J Appl Ecol 39:781–792CrossRefGoogle Scholar
  26. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  27. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. doi: 10.1111/jbi.12130 CrossRefGoogle Scholar
  28. Fairley JS (1982) Short-term effects of ringing and toe-clipping on the recapture of wood mice (Apodemus sylvaticus). J Zool 197:295–297Google Scholar
  29. Fasola M, Canova L (2000) Asymmetrical competition between the bank vole and the wood mouse, a removal experiment. Acta Theriol 45:353–365CrossRefGoogle Scholar
  30. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280. doi: 10.1111/j.1466-8238.2006.00287.x CrossRefGoogle Scholar
  31. Fisher DO, Plomberg SP (2009) Toe-bud clipping of juvenile small marsupials for ecological field research: no detectable negative effects on growth or survival. Austral Ecol 34:858–865CrossRefGoogle Scholar
  32. Fisher JT, Anholt B, Bradbury S, Wheatley M, Volpe JP (2013) Spatial segregation of sympatric marten and fishers: the influence of landscapes and species-scapes. Ecography 36:240–248. doi: 10.1111/j.1600-0587.2012.07556.x CrossRefGoogle Scholar
  33. Fitzgibbon CD (1997) Small mammals in farm woodlands: the effects of habitat, isolation and surrounding land-use patterns. J Appl Ecol 34:530–539CrossRefGoogle Scholar
  34. Gębczyńska Z (1983) Feeding habits. In: Petrusewicz K (ed) Ecology of the bank vole. Acta Theriologica XXVIII (Supplement No. 1), pp 40–49Google Scholar
  35. Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100CrossRefGoogle Scholar
  36. Ginger SM, Hellgren EC, Kasparian MA, Levesque LP, Engle DM, Leslie DM Jr (2003) Niche shift by Virgina opossum following reduction of a putative competitor, the raccoon. J Mammal 84:1279–1291CrossRefGoogle Scholar
  37. Greenwood PJ (1978) Timing of activity of the bank vole (Clethrionomys glareolus) and the wood mouse (Apodemus sylvaticus) in a deciduous woodland. Oikos 31:123–127CrossRefGoogle Scholar
  38. Harris S, Yalden D (2008) Mammals of the British Isles: handbook. The Mammal Society, SouthamptonGoogle Scholar
  39. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251. doi: 10.1023/B:BIOC.0000004319.91643.9e CrossRefGoogle Scholar
  40. Hoffmeyer I (1973) Interaction and habitat selection in the mice Apodemus flavicollis and A. sylvaticus. Oikos 24:108–116CrossRefGoogle Scholar
  41. Hoffmeyer I, Hansson L (1974) Variability in numbers and distribution of Apodemus flavicollis (Melch.) and A. sylvaticus (L.) in South Sweden. Z für Säugetierkd 39:15–23Google Scholar
  42. Holland GJ, Bennett AF (2010) Habitat fragmentation disrupts the demography of a widespread native mammal. Ecography 33:841–853. doi: 10.1111/j.1600-0587.2010.06127.x CrossRefGoogle Scholar
  43. Kalinowska A (1971) Trapping of Apodemus flavicollis and Clethrionomys glareolus in double traps. Acta Theriol 16:73–78CrossRefGoogle Scholar
  44. Kath J, Maron M, Dunn PK (2009) Interspecific competition and small bird diversity in an urbanizing landscape. Landscape Urban Plan 92:72–79. doi: 10.1016/j.landurbplan.2009.02.007 CrossRefGoogle Scholar
  45. Korn H (1987) Effects of live-trapping and toe-clipping on body weight of European and African rodent species. Oecologia 71:597–600CrossRefGoogle Scholar
  46. Kotzageorgis GC, Mason CF (1997) Small mammal populations in relation to hedgerow structure in an arable landscape. J Zool 242:425–434CrossRefGoogle Scholar
  47. Lambin X, Bauchau V (1989) Contest competition between wood mice and bank voles: is there a winner? Acta Theriol 34:385–390CrossRefGoogle Scholar
  48. Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change. An ecological and conservation synthesis. Island Press, Washington, DCGoogle Scholar
  49. Magrach A, Laurance WF, Larrinaga AR, Santamaria L (2014) Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv Biol 28:1342–1348. doi: 10.1111/cobi.12304 CrossRefPubMedGoogle Scholar
  50. Margaletic J (2004) Glavas M (2002) The development of mice and voles in an oak forest with a surplus of acorns. J Pest Sci 75:95–98Google Scholar
  51. Marsh ACW, Harris S (2000) Partitioning of woodland habitat resources by two sympatric species of Apodemus: lessons for the conservation of the yellow-necked mouse (A. flavicollis) in Britain. Biol Conserv 92:275–283CrossRefGoogle Scholar
  52. McGuire B, Getz LL, Oli MK (2002) Fitness consequences of sociality in prairie voles, Microtus ochrogaster: influence of group size and composition. Anim Behav 64:645–654CrossRefGoogle Scholar
  53. Michaux JR, Kinet S, Filippucci MG, Libois R, Besnard A, Catzeflis F (2001) Molecular identification of three sympatric species of wood mice (Apodemus sylvaticus, A. flavicollis, A. alpicola), in western Europe (Muridae: Rodentia). Mol Ecol Notes 1:260–263CrossRefGoogle Scholar
  54. Montgomery WI (1978) Intra- and interspecific interactions of Apodemus sylvaticus (L.) and A. flavicollis (Melchior) under laboratory conditions. Anim Behav 26:1247–1254CrossRefGoogle Scholar
  55. Montgomery WI (1980) The use of arboreal runways by the woodland rodents, Apodemus sylvaticus (L.), A. flavicollis (Melchior) and Clethrionomys glareolus (Schreber). Mamm Rev 10:189–195CrossRefGoogle Scholar
  56. Montgomery WI (1981) A removal experiment with sympatric populations of Apodemus sylvaticus (L.) and A. flavicollis (Melchior) (Rodentia: Muridae). Oecologia 51:123–132CrossRefGoogle Scholar
  57. Montgomery WI (1985) The effect of marking on recapture and the estimation of populations of Apodemus spp. J Zool 206:267–269CrossRefGoogle Scholar
  58. Montgomery WI, Dowie M (1993) The distribution and population regulation of the wood mouse Apodemus sylvaticus on field boundaries of pastoral farmland. J Appl Ecol 30:783–791CrossRefGoogle Scholar
  59. Montgomery WI, Lundy MG, Reid N (2012) ‘Invasional meltdown’: evidence for unexpected consequences and cumulative impacts of multispecies invasions. Biol Invasions 14:1111–1125CrossRefGoogle Scholar
  60. Mortelliti A, Lindenmayer DB (2015) Effects of landscape transformation on bird colonization and extinction patterns in a large-scale, long-term natural experiment. Conserv Biol. doi: 10.1111/cobi.12523 Google Scholar
  61. Mortelliti A, Amori G, Annesi F, Boitani L (2009) Testing for the relative contribution of patch neighborhood, patch internal structure, and presence of predators and competitor species in determining distribution patterns of rodents in a fragmented landscape. Can J Zool 87:662–670CrossRefGoogle Scholar
  62. Mortelliti A, Amori G, Boitani L (2010a) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547. doi: 10.1007/s00442-010-1623-3 CrossRefPubMedGoogle Scholar
  63. Mortelliti A, Amori G, Capizzi D, Rondinini C, Boitani L (2010b) Experimental design and taxonomic scope of fragmentation studies on European mammals: current status and future priorities. Mamm Rev 40:125–154. doi: 10.1111/j.1365-2907.2009.00157.x CrossRefGoogle Scholar
  64. Nupp TE, Swihart RK (2001) Assessing rodents competition between forest rodents in a fragmented landscape of midwestern USA. Mamm Biol 66:345–356Google Scholar
  65. Ostfeld RS, Miller MC, Schnurr J (1993) Ear tagging increases tick (Ixodes dammini) infestation rated of white-footed mice (Peromyscus leucopus). J Mammal 74:651–655CrossRefGoogle Scholar
  66. Pavone LV, Boonstra R (1985) The effects of toe clipping on the survival of the meadow vole (Microtus pennsylvanicus). Can J Zool 63:499–501. doi: 10.1139/z85-072 CrossRefGoogle Scholar
  67. Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manag 46:757–760CrossRefGoogle Scholar
  68. R Core Team (2013) R: a language and environment for statistical computing, Ver.3.0.2Google Scholar
  69. Ripperger SP, Tschapka M, Kalko EKV, Rodríguez-Herrera B, Mayer F (2014) Resisting habitat fragmentation: high genetic connectivity among populations of the frugivorous bat Carollia castanea in an agricultural landscape. Agric Ecosyst Environ 185:9–15. doi: 10.1016/j.agee.2013.12.006 CrossRefGoogle Scholar
  70. Robertson OJ, Maron M, Buckley Y, McAlpine C (2013a) Incidence of competitors and landscape structure as predictors of woodland-dependent birds. Landscape Ecol 28:1975–1987. doi: 10.1007/s10980-013-9934-5 CrossRefGoogle Scholar
  71. Robertson OJ, McAlpine C, House A, Maron M (2013b) Influence of interspecific competition and landscape structure on spatial homogenization of avian assemblages. PLoS One 8:e65299. doi: 10.1371/journal.pone.0065299 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schradin C, Pillay N (2005) Demography of the striped mouse (Rhabdomys pumilio) in the succulent karoo. Mamm Biol 70:84–92Google Scholar
  73. Sidorovich VE, Sidorovich AA, Krasko DA (2010) Effect of felling on red fox (Vulpes vulpes) and pine marten (Martes martes) diets in transitional mixed forest in Belarus. Mamm Biol 75:399–411. doi: 10.1016/j.mambio.2009.10.003 Google Scholar
  74. Sozio G, Mortelliti A, Boitani L (2013) Mice on the move: wheat rows as a means to increase permeability in agricultural landscapes. Biol Conserv 165:198–202. doi: 10.1016/j.biocon.2013.05.022 CrossRefGoogle Scholar
  75. Stanley TR, Richards JD (2004) CloseTest: a program for testing capture-recapture data for closure, Ver. 3Google Scholar
  76. Sunde P, Forsom HM, Al-sabi MNS, Overskaug K (2012) Selective predation of tawny owls (Strix aluco) on yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus). Ann Zool Fenn 49:321–330CrossRefGoogle Scholar
  77. Tattersall FH, Macdonald DW, Hart BJ, Manley WJ, Feber RE (2001) Habitat use by wood mice (Apodemus sylvaticus) in a changeable arable landscape. J Zool 255:487–494CrossRefGoogle Scholar
  78. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16CrossRefGoogle Scholar
  79. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139CrossRefGoogle Scholar
  80. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397CrossRefGoogle Scholar
  81. Wójcik JM, Wolk K (1985) The daily activity rhythm of two competitive rodents: Clethrionomys glareolus and Apodemus flavicollis. Acta Theriol 30:241–258CrossRefGoogle Scholar
  82. Wood MD, Slade NA (1990) Comparison of ear-tagging and toe-clipping in prairie voles, Microtus ochrogaster. J Mammal 71:252–255CrossRefGoogle Scholar
  83. Youngentob KN, Yoon H-J, Coggan N, Lindenmayer DB (2012) Edge effects influence competition dynamics: a case study of four sympatric arboreal marsupials. Biol Conserv 155:68–76. doi: 10.1016/j.biocon.2012.05.015 CrossRefGoogle Scholar
  84. Zhang Z, Usher MB (1991) Dispersal of wood mice and bank voles in an agricultural landscape. Acta Theriol 36:239–245CrossRefGoogle Scholar
  85. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biology and Biotechnology ‘Charles Darwin’Sapienza University of RomeRomeItaly
  2. 2.Fenner School of Environment and Society, Australian Research Council Centre for Environmental Decisions, National Environmental Research ProgramThe Australian National UniversityCanberraAustralia
  3. 3.Department of Wildlife, Fisheries, and Conservation BiologyUniversity of MaineOronoUSA

Personalised recommendations