Landscape Ecology

, Volume 31, Issue 1, pp 195–213 | Cite as

C–N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

  • Yueyang JiangEmail author
  • Adrian V. Rocha
  • Edward B. Rastetter
  • Gaius R. Shaver
  • Umakant Mishra
  • Qianlai Zhuang
  • Bonnie L. Kwiatkowski
Research Article



As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

Objectives and methods

We applied the multiple element limitation model to investigate the spatial distribution of soil organic matter and vegetation on the North Slope of Alaska and examine the effects of changes in N and P cycles on tundra C budgets under climate warming.


The spatial variation of vegetation biomass on the North Slope is mainly determined by nutrient mineralization, rather than air temperature. Our simulations show substantial increases in N and P mineralization with climate warming and consequent increases in nutrient availability to plants. There are distinctly different changes in N versus P cycles in response to warming. N is lost from the region because the warming-induced increase in N mineralization is in excess of plant uptake. However, P is more tightly cycled than N and the small loss of P under warming can be compensated by entrainment of recently weathered P into the ecosystem cycle. The increase in nutrient availability results in larger C gains in vegetation than C losses from soils and hence a net accumulation of C in the ecosystems.


The ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems. The C balance of the region is predominantly controlled by the internal nutrient cycles, and the external nutrient supply only exerts a minor effect on C budget.


Climate warming Nutrient budget C balance Nutrient limitation C-nutrient interaction 



We gratefully acknowledge support from NSF Grants # DEB-1026843, EF-1065587, and OPP-1107707 to the Marine Biological Laboratory, Woods Hole, MA. We acknowledge the use of Alaska Arctic Bioclimate Subzones map, Alaska Arctic Biomass map, and Alaska Arctic Vegetation map derived from the Toolik-Arctic Geobotanical Atlas (

Supplementary material

10980_2015_266_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)


  1. Belshe EF, Schuur EAG, Bolker BM (2013) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol Lett 16:1307–1315PubMedCrossRefGoogle Scholar
  2. Callaghan TV, Björn LO, Chapin FS III, Chernov Y, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Oechel WC, Panikov N, Shaver GR, Elster J, Henttonen H, Jónsdóttir IS, Laine K, Schaphoff S, Sitch S, Taulavuori E, Taulavuori K, Zöckler C (2005) Arctic tundra and polar desert ecosystems. Arctic climate impact assessment (ACIA). Cambridge University Press, Cambridge, pp 243–352Google Scholar
  3. Chapin FS III, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840CrossRefGoogle Scholar
  4. Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57CrossRefGoogle Scholar
  5. Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711CrossRefGoogle Scholar
  6. Coles SG (2001) An introduction to statistical modeling of extreme value. Springer, New YorkCrossRefGoogle Scholar
  7. Fan Z, Neff JC, Harden JW, Wickland KP (2008) Boreal soil carbon dynamics under a changing climate: a model inversion approach. J Geophys Res 113:G04016Google Scholar
  8. Frey K, McClelland J, Holmes R, Smith L (2007) Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J Geophys Res-Biogeosci 112:G04S58Google Scholar
  9. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Zeng N (2006) Climate–carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Clim 19:3337–3353CrossRefGoogle Scholar
  10. Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, Mckerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415–435CrossRefGoogle Scholar
  11. Giblin AE, Laundre JA, Nadelhoffer KJ, Shaver GR (1994) Measuring nutrient availability in arctic soils using ion exchange resins. Soil Sci Soc Am J 58:1154–1162CrossRefGoogle Scholar
  12. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102(38):13521–13525PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gough L, Wookey PA, Shaver GR (2002) Dry heath arctic tundra responses to long-term nutrient and light manipulation. Arct Antarct Alp Res 34:211–218CrossRefGoogle Scholar
  14. Gough L, Moore JC, Shaver GR, Simpson RT, Johnson DR (2012) Above- and belowground responses of arctic tundra ecosystems to altered soil nutrients and mammalian herbivory. Ecology 93:1683–1694PubMedCrossRefGoogle Scholar
  15. Grover J (2004) Predation, competition and nutrient recycling: a stoichiometric approach with multiple nutrients. J Theor Biol 229:31–43PubMedCrossRefGoogle Scholar
  16. Haefner JW (2005) Modeling biological systems: principles and applications. Springer, New YorkGoogle Scholar
  17. Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M (2007) Climate change and trace gases. Philos Trans R Soc A 365:1925–1954CrossRefGoogle Scholar
  18. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642CrossRefGoogle Scholar
  19. Hinzman LD, Bettez ND, Bolton WR, Chapin FS III, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Nolan M, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 72:251–298CrossRefGoogle Scholar
  20. Hobara S, McCalley C, Koba K, Giblin AE, Weiss MS, Gettel GM, Shaver GR (2006) Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: a key source of atmospheric nitrogen. Arct Alp Antarc Res 38:363–372CrossRefGoogle Scholar
  21. Hobbie JE, Peterson BJ, Bettez N, Deegan L, O’Brien WJ, Kling GW, Kipphut GW, Bowden WB, Hershey AE (1999) Impact of global change on the biogeochemistry and ecology of an arctic freshwater system. Polar Res 18:207–214CrossRefGoogle Scholar
  22. Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210CrossRefGoogle Scholar
  23. Hobbie SE, Miley TA, Weiss MS (2002) Carbon and nitrogen cycling in soils from different glacial surfaces in northern Alaska. Ecosystems 5:761–774CrossRefGoogle Scholar
  24. Hobbie SE, Gough L, Shaver GR (2005) Species compositional differences on different-aged glacial landscapes drive contrasting responses of tundra to nutrient addition. J Ecol 93:770–782CrossRefGoogle Scholar
  25. Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. J Geophys Res 115:G004002Google Scholar
  26. Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping C-L, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593CrossRefGoogle Scholar
  27. Hyvönen R, Ågren GI (2001) Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover. Can J For Res 31:1594–1601CrossRefGoogle Scholar
  28. Intergovernmental Panel on Climate Change (2007) Climate change 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  29. Jiang Y, Rastetter EB, Rocha AV, Pearce AR, Kwiatkowski BL, Shaver GR (2015) Modeling carbon–nutrient interactions during the early recovery of tundra after fire. Ecol Appl 25:1640–1652PubMedCrossRefGoogle Scholar
  30. Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD (2009) Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arct Antarct Alp Res 41:309–316CrossRefGoogle Scholar
  31. Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull Math Biol 62:1137–1162PubMedCrossRefGoogle Scholar
  32. Loranty MM, Goetz SJ, Rastetter EB, Rocha AV, Shaver GR, Humphreys ER, Lafleur PM (2011) Scaling an instantaneous model of tundra NEE to the Arctic landscape. Ecosystems 14:76–93CrossRefGoogle Scholar
  33. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443PubMedCrossRefGoogle Scholar
  34. Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EAG, Shaver GR, Verbyla DL (2011) Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475:489–492PubMedCrossRefGoogle Scholar
  35. McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E, Yi Y, Kimball JS, Koven C, Lafleur P, Miller PA, Oechel W, Peylin P, Williams M (2012) An assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosci Discuss 9:4543–4594CrossRefGoogle Scholar
  36. McKane RB, Rastetter EB, Shaver GR, Nadelhoffer KJ, Giblin AE, Laundre JA, Chapin FS III (1997) Reconstruction and analysis of historical changes in carbon storage in arctic tundra. Ecology 78:1188–1198CrossRefGoogle Scholar
  37. Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198CrossRefGoogle Scholar
  38. Mishra U, Riley WJ (2012) Alaskan soil carbon stocks: spatial variability and dependence on environmental factors. Biogeosciences 9:3637–3645CrossRefGoogle Scholar
  39. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509CrossRefGoogle Scholar
  40. Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in 6 Arctic soils. Ecology 72:242–253CrossRefGoogle Scholar
  41. Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981PubMedCrossRefGoogle Scholar
  42. Pearce AR, Rastetter EB, Kwiatkowski BL, Bowden WB, Mack MC, Jiang Y (2015) Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis. Ecol Appl 25(5):1271–1289PubMedCrossRefGoogle Scholar
  43. Rastetter EB (2011) Modeling coupled biogeochemical cycles. Front Ecol Environ 9:68–73CrossRefGoogle Scholar
  44. Rastetter EB, McKane RB, Shaver GR, Melillo JM (1992) Changes in C storage by terrestrial ecosystems: How C–N interactions restrict responses to CO2 and temperature. Water Air Soil Pollut 64:327–344CrossRefGoogle Scholar
  45. Rastetter EB, Ågren GI, Shaver GR (1997) Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecol Appl 7:444–460Google Scholar
  46. Rastetter EB, Yanai RD, Thomas RQ, Vadeboncoeur MA, Fahey TJ, Fisk MC, Kwiatkowski BL, Hamburg SP (2013) Recovery from disturbance requires resynchronization of ecosystem nutrient cycles. Ecol Appl 23:621–642PubMedCrossRefGoogle Scholar
  47. Raynolds MK, Walker DA, Maier HA (2006) Alaska Arctic Tundra Vegetation Map. 1:4,000,000. U.S. Fish and Wildlife Service. Anchorage, AKGoogle Scholar
  48. Rocha AV, Loranty MM, Higuera PE, Mack MC, Hu FS, Jones BM, Breen AL, Rastetter EB, Goetz SJ, Shaver GR (2012) The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ Res Lett 7. doi: 10.1088/1748-9326/7/4/044039 Google Scholar
  49. Rustad LE, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  50. Scenarios Network for Alaska planning (2013) Accessed 5 July 2012
  51. Schuur EAG, Crummer KG, Vogel JG, Mack MC (2007) Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10:280–292CrossRefGoogle Scholar
  52. Shaver GR, Chapin FS III (1980) Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61(3):662–675CrossRefGoogle Scholar
  53. Shaver GR, Chapin FS III (1991) Production: biomass relationships and elemental cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31CrossRefGoogle Scholar
  54. Shaver GR, Jonasson S (1999) Response of arctic ecosystems to climate change: Results of long-term field experiments in Sweden and Alaska. Polar Biol 18:245–252Google Scholar
  55. Shaver GR, Jonasson S (2001) Productivity of Arctic Ecosystems. In: Mooney H, Roy J, Saugier B (eds) Terrestrial global productivity. Academic Press, New York, pp 189–210CrossRefGoogle Scholar
  56. Shaver GR, Laundre JA (2006) Bulk precipitation collected during summer months on a per rain event basis at Toolik Field Station, North Slope of Alaska, Arctic LTER 1988–2007.
  57. Shaver GR, Billings WD, Chapin FS III, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of arctic ecosystems. Bioscience 42:433–441CrossRefGoogle Scholar
  58. Shaver GR, Bret-Harte SM, Jones MH, Johnstone J, Gough L, Laundre J, III Chapin FS (2001) Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163–3181CrossRefGoogle Scholar
  59. Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–753CrossRefGoogle Scholar
  60. Shaver GR, Street LE, Rastetter EB, van Wijk MT, Williams M (2007) Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J Ecol 95:802–817CrossRefGoogle Scholar
  61. Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497:615–618PubMedCrossRefGoogle Scholar
  62. Sitch S, McGuire AD, Kimball J, Gedney N, Gamon J, Engstrom R, McDonald KC (2007) Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modelling. Ecol Appl 17:213–234PubMedCrossRefGoogle Scholar
  63. Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Petersen A, Zhou LM, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens Environ 89:281–308CrossRefGoogle Scholar
  64. Street LE, Shaver GR, Williams M, van Wijk MT (2007) What is the relationship between chances in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J Ecol 95:139–150CrossRefGoogle Scholar
  65. Street LE, Shaver GR, Rastetter EB, van Wijk MT, Kaye BA, Williams M (2012) Incident radiation and the allocation of nitrogen within arctic plant canopies: implications for predicting gross primary productivity. Glob Chang Biol 18:2838–2852PubMedCrossRefGoogle Scholar
  66. Verbyla D (2008) The greening and browning of Alaska based on 1982–2003 satellite data. Glob Ecol Biogeogr 17:547–555CrossRefGoogle Scholar
  67. Walker DA, Epstein HE, Jia GJ, Balser A, Copass C, Edwards EJ, Raynolds MK (2003) Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J Geophys Res 108(D2):8169. doi: 10.1029/2001JD000986 CrossRefGoogle Scholar
  68. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 103:1342–1346PubMedPubMedCentralCrossRefGoogle Scholar
  69. Weatherley LR, Miladinovic ND (2004) Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res 38:4305–4312PubMedCrossRefGoogle Scholar
  70. Wilcox S (2012) National solar radiation database 1991–2010 update: user’s manual, Tech. Report NREL/TP-5500-54824, Golden, CO, USA.
  71. Yano Y, Shaver GR, Giblin AE, Rastetter EB, Nadelhoffer KJ (2010) Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N. Ecol Monogr 80:331–351CrossRefGoogle Scholar
  72. Zhang K, Kimball JS, Hogg EH, Zhao MS, Oechel WC, Cassano JJ, Running SW (2008) Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J Geophys Res 113:G03033Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yueyang Jiang
    • 1
    • 2
    Email author
  • Adrian V. Rocha
    • 3
  • Edward B. Rastetter
    • 2
  • Gaius R. Shaver
    • 2
  • Umakant Mishra
    • 4
  • Qianlai Zhuang
    • 5
  • Bonnie L. Kwiatkowski
    • 2
  1. 1.Department of Forest Ecosystems and SocietyOregon State University CorvallisUSA
  2. 2.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  3. 3.Department of BiologyUniversity of Notre DameNotre DameUSA
  4. 4.Environmental Science DivisionArgonne National LaboratoryArgonneUSA
  5. 5.Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations