Landscape Ecology

, Volume 30, Issue 10, pp 2045–2065 | Cite as

Surface water network structure, landscape resistance to movement and flooding vital for maintaining ecological connectivity across Australia’s largest river basin

  • Robbi Bishop-Taylor
  • Mirela G. Tulbure
  • Mark Broich
Research Article



Landscape-scale research quantifying ecological connectivity is required to maintain the viability of populations in dynamic environments increasingly impacted by anthropogenic modification and environmental change.


To evaluate how surface water network structure, landscape resistance to movement, and flooding affect the connectivity of amphibian habitats within the Murray–Darling Basin (MDB), a highly modified but ecologically significant region of south-eastern Australia.


We evaluated potential connectivity network graphs based on circuit theory, Euclidean and least-cost path distances for two amphibian species with different dispersal abilities, and used graph theory metrics to compare regional- and patch-scale connectivity across a range of flooding scenarios.


Circuit theory graphs were more connected than Euclidean and least-cost equivalents in floodplain environments, and less connected in highly modified or semi-arid regions. Habitat networks were highly fragmented for both species, with flooding playing a crucial role in facilitating landscape-scale connectivity. Both formally and informally protected habitats were more likely to form important connectivity “hubs” or “stepping stones” compared to non-protected habitats, and increased in importance with flooding.


Surface water network structure and the quality of the intervening landscape matrix combine to affect the connectivity of MDB amphibian habitats in ways which vary spatially and in response to flooding. Our findings highlight the importance of utilising organism-relevant connectivity models which incorporate landscape resistance to movement, and accounting for dynamic landscape-scale processes such as flooding when quantifying connectivity to inform the conservation of dynamic and highly modified environments.


Ecological connectivity Ecological networks Graph theory Circuit theory Least-cost Dispersal Amphibians Protected areas Flooding Murray–Darling Basin 



This work was funded through an Australian Research Council Discovery Early Career Researcher Award (DE140101608) to Tulbure. Flood inundation modelling was based on the Murray–Darling Basin Floodplain Inundation Model (MDB-FIM) provided by the Commonwealth Scientific and Industrial Research Organisation, as described in its metadata statement ( South Australian Ramsar boundaries were provided by the Department of Environment, Water and Natural Resources. For estimating landscape resistance to movement for our focal species, we thank M. Anstis, A. Hamer, G. Heard, F. Lemckert, J. Ocock, and M. Scroggie.

Supplementary material

10980_2015_230_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (DOCX 58 kb)


  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of “least-cost” modelling as a functional landscape model. Landsc Urban Plan 64:233–247. doi: 10.1016/S0169-2046(02)00242-6 CrossRefGoogle Scholar
  2. Amey A, Grigg G (1995) Lipid-reduced evaporative water loss in two arboreal hylid frogs. Comp Biochem Physiol A 111:283–291CrossRefGoogle Scholar
  3. Anstis M (2013) Tadpoles and frogs of Australia. New Holland Publishers, SydneyGoogle Scholar
  4. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev Camb Philos Soc 88:310–326. doi: 10.1111/brv.12000 PubMedCrossRefGoogle Scholar
  5. Ballinger A, Mac Nally RC (2006) The landscape context of flooding in the Murray–Darling Basin. Adv Ecol Res 39:85–105. doi: 10.1016/S0065-2504(06)39005-8 CrossRefGoogle Scholar
  6. Brooks CP, Antonovics J, Keitt TH (2008) Spatial and temporal heterogeneity explain disease dynamics in a spatially explicit network model. Am Nat 172:149–159. doi: 10.1086/589451 PubMedCrossRefGoogle Scholar
  7. Bunn A, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278. doi: 10.1006/jema.2000.0373 CrossRefGoogle Scholar
  8. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536. doi: 10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2
  9. Campbell A (1999) Declines and disappearances of Australian frogs. Environment Australia, Canberra. Accessed Nov 2014
  10. Chandra AK, Raghavan P, Ruzzo WL, Smolensky R, Tiwari P (1996) The electrical resistance of a graph captures its commute and cover times. Comput Complex 6:312–340. doi: 10.1007/BF01270385 CrossRefGoogle Scholar
  11. Chen Y, Cuddy SM, Merrin LE, Huang C, Pollock D, Sims N, Wang B, Bai Q (2012) Murray–Darling Basin floodplain inundation model version 2.0 (MDB-FIM2). Technical Report. CSIRO Water for a Healthy Country Flagship, Australia. Accessed Nov 2014
  12. Chessman BC (2013) Do protected areas benefit freshwater species? A broad-scale assessment for fish in Australia’s Murray–Darling Basin. J Appl Ecol 50:969–976. doi: 10.1111/1365-2664.12104 CrossRefGoogle Scholar
  13. Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799. doi: 10.1111/j.1523-1739.2007.00674.x PubMedCrossRefGoogle Scholar
  14. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695. Accessed Nov 2014
  15. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240. doi: 10.1016/j.biocon.2005.09.031 CrossRefGoogle Scholar
  16. Davis J, Pavlova A, Thompson R, Sunnucks P (2013) Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob Change Biol 19:1970–1984. doi: 10.1111/gcb.12203 CrossRefGoogle Scholar
  17. Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landscape Ecol 27:267–279. doi: 10.1007/s10980-011-9694-z CrossRefGoogle Scholar
  18. Doyle PG, Snell JL (1984) Random walks and electric networks. Mathematical Association of America, Washington, DCGoogle Scholar
  19. Estrada E, Bodin Ö (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18:1810–1825PubMedCrossRefGoogle Scholar
  20. Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015. doi: 10.1111/j.1365-2435.2007.01326.x CrossRefGoogle Scholar
  21. Finlayson CM, Davis JA, Gell PA, Kingsford RT, Parton KA (2011) The status of wetlands and the predicted effects of global climate change: the situation in Australia. Aquat Sci 75:73–93. doi: 10.1007/s00027-011-0232-5 CrossRefGoogle Scholar
  22. Fisher M, Garner T, Walker S (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310PubMedCrossRefGoogle Scholar
  23. Fitzsimons JA, Robertson HA (2005) Freshwater reserves in Australia: directions and challenges for the development of a comprehensive, adequate and representative system of protected areas. Hydrobiologia 552:87–97. doi: 10.1007/s10750-005-1507-4 CrossRefGoogle Scholar
  24. Fletcher RJ, Acevedo MA, Reichert BE, Pias KE, Kitchens WM (2011) Social network models predict movement and connectivity in ecological landscapes. Proc Natl Acad Sci USA 108:19282–19287. doi: 10.1073/pnas.1107549108 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Fortuna MA, Gómez-Rodríguez C, Bascompte J (2006) Spatial network structure and amphibian persistence in stochastic environments. Proc R Soc Lond B 273:1429–1434. doi: 10.1098/rspb.2005.3448 CrossRefGoogle Scholar
  26. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55. doi: 10.1016/j.biocon.2010.09.002 CrossRefGoogle Scholar
  27. Geoscience Australia (GA, 2006) GEODATA TOPO 250K Series 3 (Packaged-Shape file format). Accessed Nov 2014
  28. Geoscience Australia (GA, 2010) Murray Darling Basin waterbodies project. Spatial data and metadata prepared for Murray Darling Basin Authority, February 2010. Accessed Nov 2014
  29. Geoscience Australia (GA), Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES, 2011) The national dynamic land cover dataset. Accessed Nov 2014
  30. Gonzalez D, Scott A, Miles M (2011) Assessing the vulnerability of native vertebrate fauna under climate change to inform wetland and floodplain management of the River Murray in South Australia. Report prepared for the South Australian Murray–Darling Basin Natural Resources Management Board. Accessed May 2015
  31. Graham CH, Vanderwal J, Phillips SJ, Moritz C, Williams SE (2010) Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33:1062–1069. doi: 10.1111/j.1600-0587.2010.06430.x CrossRefGoogle Scholar
  32. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  33. Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–219CrossRefGoogle Scholar
  34. Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16. doi: 10.1111/j.1095-8312.1991.tb00548.x CrossRefGoogle Scholar
  35. Hazell D (2003) Frog ecology in modified Australian landscapes: a review. Wildl Res 30:193–205. doi: 10.1071/WR02075 CrossRefGoogle Scholar
  36. Hazell D, Hero JM, Lindenmayer D, Cunningham R (2004) A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biol Conserv 119:61–71. doi: 10.1016/j.biocon.2003.10.022 CrossRefGoogle Scholar
  37. Heard GW, Scroggie MP, Malone BS (2012a) Classical metapopulation theory as a useful paradigm for the conservation of an endangered amphibian. Biol Conserv 148:156–166. doi: 10.1016/j.biocon.2012.01.018 CrossRefGoogle Scholar
  38. Heard GW, Scroggie MP, Malone BS (2012b) The life history and decline of the threatened Australian frog, Litoria raniformis. Austral Ecol 37:276–284. doi: 10.1111/j.1442-9993.2011.02275.x CrossRefGoogle Scholar
  39. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  40. Hines H, Mahony M, McDonald K (1999) An assessment of frog declines in wet subtropical Australia. In: Campbell A (ed) Declines and disappearances of Australian frogs. Environment Australia, Canberra, pp 44–63. Accessed Aug 2014
  41. Hock K, Wolff NH, Condie SA, Anthony KRN, Mumby PJ (2014) Connectivity networks reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. J Appl Ecol 51:1188–1196. doi: 10.1111/1365-2664.12320 CrossRefGoogle Scholar
  42. Jansen A, Healey M (2003) Frog communities and wetland condition: relationships with grazing by domestic livestock along an Australian floodplain river. Biol Conserv 109:207–219. doi: 10.1016/S0006-3207(02)00148-9 CrossRefGoogle Scholar
  43. Johst K, Brandl R, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 2:263–270CrossRefGoogle Scholar
  44. Keller L, Waller D (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  45. Keymer J, Marquet P (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156:478–494CrossRefGoogle Scholar
  46. Kingsford RT (2000) Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol 25:109–127CrossRefGoogle Scholar
  47. Kingsford RT (2011) Conservation management of rivers and wetlands under climate change—a synthesis. Mar Freshw Res 62:217–222. doi: 10.1071/MF11029 CrossRefGoogle Scholar
  48. Kingsford RT, Brandis K, Thomas RF, Crighton P, Knowles E, Gale E (2004) Classifying landform at broad spatial scales: the distribution and conservation of wetlands in New South Wales, Australia. Mar Freshw Res 55:17–31. doi: 10.1071/MF03075 CrossRefGoogle Scholar
  49. Kingsford RT, Biggs HC, Pollard SR (2011) Strategic Adaptive Management in freshwater protected areas and their rivers. Biol Conserv 144:1194–1203. doi: 10.1016/j.biocon.2010.09.022 CrossRefGoogle Scholar
  50. Kininmonth SJ, De’ath G, Possingham HP (2009) Graph theoretic topology of the Great but small Barrier Reef world. Theor Ecol 3:75–88. doi: 10.1007/s12080-009-0055-3 CrossRefGoogle Scholar
  51. Kramer-Schadt S, Kaiser T, Frank K, Wiegand T (2011) Analyzing the effect of stepping stones on target patch colonisation in structured landscapes for Eurasian lynx. Landscape Ecol 26:501–513. doi: 10.1007/s10980-011-9576-4 CrossRefGoogle Scholar
  52. Leidner AK, Haddad NM (2011) Combining measures of dispersal to identify conservation strategies in fragmented landscapes. Conserv Biol 25:1022–1031. doi: 10.1111/j.1523-1739.2011.01720.x PubMedCrossRefGoogle Scholar
  53. Mac Nally RC (1984) Chorus dynamics of two sympatric species of Ranidella (anura): within-year and between-year variability in organisation and their determination. Zeitshriftfür Tierpsychol 65:134–151CrossRefGoogle Scholar
  54. Mac Nally R, Horrocks G, Lada H, Lake PS, Thomson JR, Taylor AC (2009) Distribution of anuran amphibians in massively altered landscapes in south-eastern Australia: effects of climate change in an aridifying region. Glob Ecol Biogeogr 18:575–585. doi: 10.1111/j.1466-8238.2009.00469.x CrossRefGoogle Scholar
  55. Mahony M (1996) The decline of the green and golden bell frog Litoria aurea viewed in the context of declines and disappearances of other Australian frogs. Aust Zool 30:237–247CrossRefGoogle Scholar
  56. Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49. doi: 10.1046/j.1523-1739.2001.00129.x CrossRefGoogle Scholar
  57. Matisziw TC, Alam M, Trauth KM, Inniss EC, Semlitsch RD, McIntosh S, Horton J (2014) A vector approach for modeling landscape corridors and habitat connectivity. Environ Model Assess 20:1–15. doi: 10.1007/s10666-014-9412-8 CrossRefGoogle Scholar
  58. Mazerolle MJ, Desrochers A (2005) Landscape resistance to frog movements. Can J Zool 464:455–464. doi: 10.1139/Z05-032 CrossRefGoogle Scholar
  59. McGinness H, Arthur A, Ward K, Ward P (2014) Floodplain amphibian abundance: responses to flooding and habitat type in Barmah Forest, Murray River, Australia. Wildl Res 41:149–162. doi: 10.1071/WR13224 CrossRefGoogle Scholar
  60. McIntyre NE, Strauss RE (2013) A new, multi-scaled graph visualization approach: an example within the playa wetland network of the Great Plains. Landscape Ecol 28:769–782. doi: 10.1007/s10980-013-9862-4 CrossRefGoogle Scholar
  61. McIntyre NE, Wright CK, Swain S, Hayhoe K, Liu G, Schwartz FW, Henebry GM (2014) Climate forcing of wetland landscape connectivity in the Great Plains. Front Ecol Environ 12:59–64. doi: 10.1890/120369 CrossRefGoogle Scholar
  62. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561. doi: 10.1554/05-321.1 PubMedCrossRefGoogle Scholar
  63. McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890. doi: 10.1073/pnas.0706568104 PubMedCentralPubMedCrossRefGoogle Scholar
  64. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724PubMedCrossRefGoogle Scholar
  65. Minor ES, Lookingbill TR (2010) A multiscale network analysis of protected-area connectivity for mammals in the United States. Conserv Biol 24:1549–1558. doi: 10.1111/j.1523-1739.2010.01558.x PubMedCrossRefGoogle Scholar
  66. Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782. doi: 10.1890/06-1073.1 PubMedCrossRefGoogle Scholar
  67. Moilanen A, Franco AMA, Early RI, Fox R, Wintle BA, Thomas CD (2005) Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc R Soc B 272:1885–1891. doi: 10.1098/rspb.2005.3164 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Montoya JM, Sol RV (2002) Small world patterns in food webs. J Theor Biol 214:405–412. doi: 10.1006/jtbi.2001.2460 PubMedCrossRefGoogle Scholar
  69. Moore JA, Tallmon DA, Nielsen J, Pyare S (2011) Effects of the landscape on boreal toad gene flow: does the pattern–process relationship hold true across distinct landscapes at the northern range margin? Mol Ecol 20:4858–4869. doi: 10.1111/j.1365-294X.2011.05313.x PubMedCrossRefGoogle Scholar
  70. Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649. doi: 10.1111/j.1365-294X.2010.04723.x PubMedCrossRefGoogle Scholar
  71. Murray–Darling Basin Authority, MDBA (2012) Water resource plan areas and water accounting periods. Basin Plan. Murray–Darling Basin Authority, Canberra, pp 15–19Google Scholar
  72. Nairn LC, Kingsford RT (2012) Wetland distribution and land use in the Murray–Darling Basin. A report to the Australian Floodplain Association. Australian Wetlands, Rivers and Landscapes Centre, UNSW, Sydney. Accessed Nov 2014
  73. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRefGoogle Scholar
  74. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E. doi: 10.1103/PhysRevE.69.026113 Google Scholar
  75. Nowakowski AJ, DeWoody JA, Fagan ME, Willoughby JR, Donnelly MA (2015a) Mechanistic insights into landscape genetic structure of two tropical amphibians using field-derived resistance surfaces. Mol Ecol 24:580–595. doi: 10.1111/mec.13052 PubMedCrossRefGoogle Scholar
  76. Nowakowski J, Veiman-Echeverria M, Kurz D, Donnelly MA (2015b) Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces. Ecol Appl. doi: 10.1890/14-0833.1
  77. Nuñez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, Singleton PH, Tewksbury JJ (2013) Connectivity planning to address climate change. Conserv Biol 27:407–416. doi: 10.1111/cobi.12014 PubMedCrossRefGoogle Scholar
  78. Ocock J, Rowley J, Penman T (2013) Amphibian chytrid prevalence in an amphibian community in arid Australia. EcoHealth 10:77–81. doi: 10.1007/s10393-013-0824-8 PubMedCrossRefGoogle Scholar
  79. Ocock JF, Kingsford RT, Penman TD, Rowley JJL (2014) Frogs during the flood: differential behaviours of two amphibian species in a dryland floodplain wetland. Austral Ecol 39:929–940. doi: 10.1111/aec.12158 CrossRefGoogle Scholar
  80. Perkins SE, Cagnacci F, Stradiotto A, Arnoldi D, Hudson PJ (2009) Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics. J Anim Ecol 78:1015–1022. doi: 10.1111/j.1365-2656.2009.01557.x PubMedCrossRefGoogle Scholar
  81. Peterman WE, Rittenhouse TAG, Earl JE, Semlitsch RD (2013) Demographic network and multi-season occupancy modeling of Rana sylvatica reveal spatial and temporal patterns of population connectivity and persistence. Landscape Ecol 28:1601–1613. doi: 10.1007/s10980-013-9906-9 CrossRefGoogle Scholar
  82. Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413. doi: 10.1111/mec.12747 PubMedCrossRefGoogle Scholar
  83. Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecol 24:253–266. doi: 10.1007/s10980-008-9303-y CrossRefGoogle Scholar
  84. Pittman SE, Osbourn MS, Semlitsch RD (2014) Movement ecology of amphibians: a missing component for understanding population declines. Biol Conserv 169:44–53. doi: 10.1016/j.biocon.2013.10.020 CrossRefGoogle Scholar
  85. Pittock B, Abbs D, Suppiah R, Jones R (2006) Climatic background to past and future floods in Australia. Adv Ecol Res 39:13–39. doi: 10.1016/S0065-2504(06)39002-2 CrossRefGoogle Scholar
  86. Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19:1205–1223. doi: 10.1007/s10531-009-9750-z CrossRefGoogle Scholar
  87. Pyke C (2005) Assessing suitability for conservation action: prioritizing interpond linkages for the California tiger salamander. Conserv Biol 19:492–503CrossRefGoogle Scholar
  88. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed April 2014
  89. Ribeiro R, Carretero MA, Sillero N, Alarcos G, Ortiz-Santaliestra M, Lizana M, Llorente GA (2011) The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns? Landscape Ecol 26:673–682. doi: 10.1007/s10980-011-9592-4 CrossRefGoogle Scholar
  90. Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 21:4437–4451. doi: 10.1111/j.1365-294X.2012.05708.x PubMedCrossRefGoogle Scholar
  91. Rogers K, Ralph TJ (2010a) Floodplain wetlands of the Murray–Darling Basin and their freshwater biota. In: Rogers K, Ralph TJ (eds) Floodplain wetland biota in the Murray–Darling Basin water habitat requirements. CSIRO Publishing, Collingwood, pp 1–16Google Scholar
  92. Rogers K, Ralph TJ (2010b) Impacts of hydrological changes on floodplain wetland biota. In: Rogers K, Ralph TJ (eds) Floodplain wetland biota in the Murray–Darling Basin water habitat requirements. CSIRO Publishing, Collingwood, pp 311–328Google Scholar
  93. Ruiz L, Parikh N, Heintzman LJ, Collins SD, Starr SM, Wright CK, Henebry GM, van Gestel N, McIntyre NE (2014) Dynamic connectivity of temporary wetlands in the southern Great Plains. Landscape Ecol 29:507–516. doi: 10.1007/s10980-013-9980-z CrossRefGoogle Scholar
  94. Saura S, Bodin Ö, Fortin MJ (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51:171–182. doi: 10.1111/1365-2664.12179 CrossRefGoogle Scholar
  95. Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267. doi: 10.2193/2007-082 CrossRefGoogle Scholar
  96. Shah VB, McRae BH (2008) Circuitscape: a tool for landscape ecology. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in science conference (SciPy 2008), Pasadena, CA, pp 62–66. Accessed April 2014
  97. Sinsch U (2014) Movement ecology of amphibians: from individual migratory behaviour to spatially structured populations in heterogeneous landscapes. Can J Zool 502:491–502CrossRefGoogle Scholar
  98. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128. doi: 10.1111/j.0906-7590.2005.04042.x CrossRefGoogle Scholar
  99. Smith MJ, Schreiber ESG, Scroggie MP, Kohout M, Ough K, Potts J, Lennie R, Turnbull D, Jin C, Clancy T (2007) Associations between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinisation. Freshw Biol 52:75–84. doi: 10.1111/j.1365-2427.2006.01672.x
  100. Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591. doi: 10.1111/j.1365-294X.2010.04657.x
  101. St-Louis V, Forester JD, Pelletier D, Bélisle M, Desrochers A, Rayfield B, Wulder MA, Cardille JA (2014) Circuit theory emphasizes the importance of edge-crossing decisions in dispersal-scale movements of a forest passerine. Landscape Ecol 29:831–841. doi: 10.1007/s10980-014-0019-x
  102. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi: 10.1126/science.1103538
  103. Treml EA, Halpin PN, Urban DL, Pratson LF (2007) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecol 23:19–36. doi: 10.1007/s10980-007-9138-y CrossRefGoogle Scholar
  104. Tulbure MG, Kininmonth SJ, Broich M (2014) Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation. Environ Res Lett 9:114012. doi: 10.1088/1748-9326/9/11/114012 CrossRefGoogle Scholar
  105. Tyler M (1991) Declining amphibian populations—a global phenomenon? An Australian perspective. Alytes 9:43–50Google Scholar
  106. Uden D, Hellman M, Angeler DG, Allen CR (2014) The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands. Ecol Appl 24:1569–1582CrossRefGoogle Scholar
  107. Urban DL, Keitt TH (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218CrossRefGoogle Scholar
  108. Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12:260–273. doi: 10.1111/j.1461-0248.2008.01271.x PubMedCrossRefGoogle Scholar
  109. Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol 2:3160–3167. doi: 10.1002/ece3.424 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Van Etten J (2014) gdistance: distances and routes on geographical grids. R package version 1.1-5. Accessed Nov 2014
  111. Vié J-C, Hilton-Taylor C, Stuart SN (2008) Wildlife in a changing world: an analysis of the 2008 IUCN Red List of Threatened Species. IUCN-The World Conservation Union, GlandGoogle Scholar
  112. Vos CC, Goedhart P (2007) Matrix permeability of agricultural landscapes: an analysis of movements of the common frog (Rana temporaria). Herpetol J 17:174–182Google Scholar
  113. Wassens S (2010a) Flooding regimes for frogs in lowland rivers of the Murray–Darling Basin. In: Saintilan N, Overton I (eds) Ecosystem response modelling in the Murray–Darling Basin. CSIRO Publishing, Collingwood, pp 213–227Google Scholar
  114. Wassens S (2010b) Frogs. In: Rogers K, Ralph T (eds) Floodplain wetland biota of the Murray–Darling Basin: water and habitat requirements. CSIRO Publishing, Collingwood, pp 253–274Google Scholar
  115. Wassens S, Maher M (2011) River regulation influences the composition and distribution of inland frog communities. River Res Appl 27:238–246. doi: 10.1002/rra.1347 CrossRefGoogle Scholar
  116. Wassens S, Watts RJ, Jansen A, Roshier D (2008) Movement patterns of southern bell frogs (Litoria raniformis) in response to flooding. Wildl Res 35:50–58. doi: 10.1071/WR07095 CrossRefGoogle Scholar
  117. Wassens S, Walcott A, Wilson A, Freire R (2013) Frog breeding in rain-fed wetlands after a period of severe drought: implications for predicting the impacts of climate change. Hydrobiologia 708:69–80. doi: 10.1007/s10750-011-0955-2 CrossRefGoogle Scholar
  118. Wright CK (2010) Spatiotemporal dynamics of prairie wetland networks: power-law scaling and implications for conservation planning. Ecology 91:1924–1930PubMedCrossRefGoogle Scholar
  119. Zeigler SL, Fagan WF (2014) Transient windows for connectivity in a changing world. Mov Ecol 2:1. doi: 10.1186/2051-3933-2-1 PubMedCentralPubMedCrossRefGoogle Scholar
  120. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797. doi: 10.1007/s10980-012-9737-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre for Ecosystem Science, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations