Landscape Ecology

, Volume 30, Issue 5, pp 887–904 | Cite as

The potential impacts of changes in ecological networks, land use and climate on the Eurasian crane population in Estonia

  • Aivar Leito
  • Robert Gerald Henry Bunce
  • Mart Külvik
  • Ivar Ojaste
  • Janar Raet
  • Miguel Villoslada
  • Meelis Leivits
  • Anne Kull
  • Valdo Kuusemets
  • Tiiu Kull
  • Marc Joris Metzger
  • Kalev Sepp
Research Article

Abstract

Context

The Eurasian crane (Grus grus) is an iconic and sensitive species. It is therefore necessary to understand its landscape ecology in order to determine threats.

Objectives

(1) To map the distribution of cranes and then model their habitat requirements in Estonia, linked to the current level of protection. (2) To determine the environmental characteristics of, and the habitats present in, sites utilized by the birds, and their sensitivity to change.

Methods

(1) The distribution of cranes was recorded by observation and by tracking individuals. A model of potential breeding sites was compared with the occurrence of the bird in Estonia and then linked to protected sites. (2) The seasonal distribution of the bird was overlaid with a European environmental classification and the CORINE land cover map. A model of climate change was also utilized.

Results

(1) A new map of European migration routes, wintering and stopover sites is presented. (2) The bird requires a habitat network, with wetlands being essential for nesting and roosting. The composition of habitats used for feeding varies according to geographical location. (3) In Estonia not all potential breeding sites are occupied and many existing sites are not protected. (4) Climate change could threaten populations in the south but could be beneficial in Estonia.

Conclusions

(1) The existing ecological network in Estonia is adequate to maintain a viable breeding population of the Eurasian crane. (2) Climate change could support the breeding of cranes but complicate their migration and wintering.

Keywords

Eurasian crane Flyways Wintering sites Breeding habitats Wetlands Cereal fields Protection 

Notes

Acknowledgments

This work was supported by institutional research funding IUT21-1 of the Estonian Ministry of Education and Research. The authors are grateful to many colleagues and birdwatchers for help in crane surveys in Estonia and elsewhere in Europe and Africa. The authors would like to thank three anonymous reviewers for valuable comments, which have greatly improved the paper, and Freda Bunce for the final editing of the English.

References

  1. Albrecht J, Rauch M, Hinke E et al (2010) Rhin-Havelluch region—common cranes Grus grus resting near Berlin. Vogelwelt 131:135–139Google Scholar
  2. Alonso L-SC (2006) An approach to wintering of Black Stork Ciconia nigra in the Iberian Peninsula. Biota 7:7–13Google Scholar
  3. Alonso AJ, Alonso CJ, Bautista LM (1994) Carrying capacity of staging areas and facultative migration extension in common cranes. J Appl Ecol 31:212–222CrossRefGoogle Scholar
  4. Alonso CJ, Bautista ML, Alonso AJ (1997) Dominance and the dynamics of phenotype-limited distribution in common cranes. Behav Ecol Sociobiol 40:401–408CrossRefGoogle Scholar
  5. Alonso JC, Bautista LM, Alonso JA (2004) Family-based territoriality vs flocking in wintering common cranes Grus grus. J Avian Biol 35:434–444CrossRefGoogle Scholar
  6. Alonso AJ, Alonso CJ, Nowald G (2008) Migration and wintering patterns of a central European population of common crane Grus grus. Bird Study 55:1–7CrossRefGoogle Scholar
  7. Alonso JC, Alonso JA, Onrubia A, Cruz CM, Cangarato R (2014) Wintering of common cranes in Spain, Portugal and Morocco. A summary of results 1979–2014. In: Scientific abstracts of oral and poster contributions of the VIIIth European crane conference 2014. Gallocanta, 10 to 14 November 2014, Friends of Gallocanta Association, Gallocanta, SpainGoogle Scholar
  8. Avilés JM, Sánchez JM, Parejo D (2002) Food selection of wintering common cranes (Grus grus) in holm oak (Quercus ilex) dehesas in south-west Spain in rainy season. J Zool 256:71–79CrossRefGoogle Scholar
  9. Barsi JA, Hook SJ, Schott JR, Raqueno NG, Markham BL (2007) Landsat-5 Thematic Mapper thermal band calibration update. IEEE Geosci Remote Sens Lett 4(4):552–555Google Scholar
  10. Bautista ML, Alonso CJ (2013) Factors influencing daily food-intake patterns in birds: a case study with wintering common cranes. The Condor 115:330–339CrossRefGoogle Scholar
  11. Cano L, Pacheco C, Refoyo P, Tellería JL (2014) Geographical and environmental factors affecting the distribution of wintering black storks Ciconia nigra in the Iberian Peninsula. J Avian Biol 45:514–521Google Scholar
  12. Cramp S, Simmons KEL (eds) (1980) The birds of the western palearctic, vol II. Oxford University Press, OxfordGoogle Scholar
  13. Dahl E (2007) The phytogeography of Northern Europe British Isles, Fennoscandia, and adjacent areas. Cambridge University Press, CambridgeGoogle Scholar
  14. Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, Böhm M (2013) Wildlife comeback in Europe: the recovery of selected mammal and bird species. Final report to Rewilding Europe by ZSL. BirdLife International and the European Bird Census Council, London UK: ZSL. http://www.seo.org/wp-content/uploads/2013/09/Wildlife-Comeback-Study-PDF. Accessed March 2014
  15. Elts J, Leito A, Leivits A, Luigujõe L, Mägi E, Nellis Rein, Nellis Renno, Ots M, Pehlak H (2013) Status and numbers of Estonian birds, 2008–2012. Hirundo 26(2):80–112Google Scholar
  16. European Commission (1994) CORINE land cover. Technical guide. Office for Official Publications of European Communities, LuxembourgGoogle Scholar
  17. European Commission (2010) Situation and prospects for EU agriculture and rural areas. European Commission Directorate—General for Agriculture and Rural DevelopmentGoogle Scholar
  18. European Crane Working Group (2014) http://champagne-ardenne.lpo.fr/grus-grus/GreatCraneProject. Accessed March 2014
  19. Fourcade Y, Engler JO, Besnard AG, Rödder D, Secondi, J (2013) Confronting expert-based and modelled distributions for species with uncertain conservation status: a case study from the corncrake (Crex crex). Biol Conserv 167:161–171Google Scholar
  20. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  21. Guzmán SMJ, Garciá SA, Amado CC, del Viejoa AM (1999) Influence of farming activities in the Iberian Peninsula on the winter habitat use of common crane (Grus grus) in areas if its traditional migratory routes. Agric Ecosyst Environ 72:207–214Google Scholar
  22. Hansbauer V, Végvári Z, Harris J (2014) Eurasian cranes and climate change. Will short term gains be followed by long term loss? International Crane Foundation, Baraboo, Wisconsin, USA. https://www.savingcranes.org/images/stories/pdf/conservation/eurasian_cranes_and_climate_change.pdf
  23. Harris J (2012) Cranes, agriculture, and climate change. In: Proceedings of a workshop organized by the International Crane Foundation and Muraviovka Park for Sustainable Land Use. International Crane Foundation, Baraboo, Wisconsin, USAGoogle Scholar
  24. Hijmans RJ, Phillips S, Leathwick J, Elith J (2013) dismo: species distribution modelling. R package version 0.9-3. http://CRAN.R-project.org/package=dismo. Accessed March 2014
  25. Holt C, Austin G, Calbrade N, Mellan H, Hearn R, Stroud D, Wotton S, Musgrove A (2012) Waterbirds in the UK 2010/11: the Wetland Bird Survey. British Trust for Ornithology, Royal Society for the Protection of Birds and the Joint Nature Conservation Committee in association with the Wetlands & Wildfowl Trust. http://www.bto.org/sites/default/files/u18/downloads/publications/wituk1011_section1.pdf. Accessed March 2014
  26. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durham University, the RSPB and Lynx Edicions, BarcelonaGoogle Scholar
  27. Ilyashenko E, Winter S (eds) (2011) Cranes of Eurasia (biology, distribution, migrations, management). In: Proceedings of the CWGE International Conference of “Cranes of Palearctic: Biology and Conservation”, Issue 4. A.N. Severtsov Institute of Ecology and Evolution RAS, MoscowGoogle Scholar
  28. Kaasik A, Sepp K, Raet J, Kuusemets V (2011) Transformation of rural landscape in Hiiumaa since 1956: consequences to open and half-open semi-natural habitats. Ekológia (Bratislava) 30(2):257–268Google Scholar
  29. Keskpaik J, Paakspuu V, Leito A, Lilleleht V, Leht R, Kastepõld T, Kuresoo A, Rattiste K (1986) Autumn concentrations of cranes Grus grus in Estonia. Vår Fågelvärld Suppl 11:81–84Google Scholar
  30. Kraniche (2014) Kranichschutz Deutschland. http://www.kraniche.de. Accessed December 2014
  31. Kukk L, Astover A, Muiste P, Noormets M, Roostalu H, Sepp K, Suuster E (2010) Assessment of abandoned agricultural land resource for bio-energy production in Estonia. Acta Agric Scand B 60(2):166–173Google Scholar
  32. Leito A (2012) Sookure seire, aruanne 2012 (monitoring of Eurasian Crane in Estonia, report 2012). Tartu. http://seire.keskkonnainfo.ee/index.php?option=com_content&view=article&id=2825:haned-luiged-ja-sookurg-2012&catid=1296:eluslooduse-mitmekesisuse-ja-maastike-seire-2012-&Itemid=5748. Accessed March 2014
  33. Leito A, Lepisk A, Õun A (1987) Osennie skoplenija seryh žuravlej v jugo-vostočnoj Èstonii (autumnal concentration of the common Crane in South-Eastern Estonia). In: Neufeldt IA, Keskpaik J (eds) Communications of the Baltic Commission for the Study of Bird Migration 19, Tartu, 1987Google Scholar
  34. Leito A, Truu J, Leivits A, Ojaste I (2003) Changes in distribution and numbers of the breeding population of the Common Crane Grus grus in Estonia. Ornis Fenn 80(42):159–171Google Scholar
  35. Leito A, Ojaste I, Truu J, Palo A (2005) Nest site selection of the Eurasian Crane Grus grus in Estonia: an analyse of nest record cards. Ornis Fenn 82(2):44–54Google Scholar
  36. Leito A, Keskpaik J, Ojaste I, Truu J (2006) The Eurasian Crane in Estonia. Estonian University of Life Sciences, TartuGoogle Scholar
  37. Leito A, Truu J, Õunsaar M, Sepp K, Kaasik A, Ojaste I, Mägi E (2008) The impact of agriculture on autumn staging Eurasian Cranes (Grus grus) in Estonia. Agric Food Sci 17(1):53–62Google Scholar
  38. Leito A, Ojaste I, Sellis U (2011) Eesti sookurgede Grus grus rändeteed (the migration routes of Eurasian Cranes breeding in Estonia). Hirundo 24(2):42–53Google Scholar
  39. Leito A, Ojaste I, Põder I (2013) Dependence of cranes on arable lands and the crop damage problem in Estonia. In: Nowald G, Weber A, Fanke J et al (eds) Proceedings of the VIIth European Crane conference: breeding, resting, migration and biology. Crane Conservation Germany, Gross MohrdorfGoogle Scholar
  40. Leivits M (2013) Madalsoode ja rabade haudelinnustiku seire 2013 (monitoring of breeding birds of fens and bogs in Estonia, Report 2013). Keskkonnaamet, Tallinn. http://seire.keskkonnainfo.ee/attachments/article/3110/soolind2013.pdf. Accessed March 2014
  41. Lundin G (ed) (2005) Cranes—where, when and why? Vår Fågelvärld Supplement No 43. Swedish Ornithological Society, SwedenGoogle Scholar
  42. Maclean IMD, Austin GE, Rehfisch MM, Blew J, Crowe O, Delany S, Devos K, Deceuninck B, Guønther K, Laursen K, van Roomen M, Wahl JS (2008) Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biol 14:2489–2500Google Scholar
  43. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563Google Scholar
  44. Metzger MJ, Bunce RGH, Leemans R, Viner D (2008) Projected environmental shifts under climate change: European trends and regional impacts. Environ Conserv 35(1):64–75Google Scholar
  45. Metzger MJ, Shkaruba AD, Jongman RHG, Bunce RGH (2012) Descriptions of the European environmental zones and strata. Alterra, Wageningen. https://envsci.ceu.hu/publications/metzger/2012/32874. Accessed March 2014
  46. Metzger MJ, Bunce RGH, Jongman RHG, Sayre R, Trabucco A, Zomer R (2013) A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecol Biogeogr 22:630–638Google Scholar
  47. Migration map (2014) http://birdmap.5dvision.ee/index.php?lang=en. Accessed March 2014
  48. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper no. 55. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UKGoogle Scholar
  49. Munillo P (2014) Gallocanta’s agri-environmental measures: 20 years managing the conflict between cranes and agricultural production. In: Scientific Abstracts of Oral and poster contributions of the VIIIth European Crane Conference 2014. Gallocanta, 10 to 14 November 2014, Friends of Gallocanta Association, Gallocanta, SpainGoogle Scholar
  50. Nowald G (2010) Colour marking and radio tracking of common cranes Grus grus in Germany and Europe—an overview. Vogelwelt 131:111–116Google Scholar
  51. Nowald G, Donner N, Modrow M (2010) The development of common crane Grus grus resting and the influence of agriculture in the Rügen-Bock region in northeast Germany. Vogelwelt 131:123–127 (in German with English summary)Google Scholar
  52. Nowald G, Weber A, Weinhardt E (2012) Das Kranichjahr 2011/2012. The year of the crane 2011/2012. AG Kranichschutz DEuttscland. Kranich-Informationszentrum, Gross MohrdorfGoogle Scholar
  53. Nowald G, Weber A, Fanke J, Weinhardt E, Donner N (eds) (2013) Proceedings of the VIIth European Crane Conference: breeding, resting, migration and biology. Crane Conservation Germany, Gross MohrdorfGoogle Scholar
  54. Palang H, Mander U, Luud A (1998) Landscape diversity changes in Estonia. Landsc Urban Plan 41:163–169CrossRefGoogle Scholar
  55. Phillips S, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  56. Phillips S, Dudik M, Schapire R (2004) A maximum entropy approach to species distribution modelling. In: Proceedings of the twenty-first international conference on machine learningGoogle Scholar
  57. Phillips S, Anderson R, Schapire R (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  58. Prange H (ed) (1989) Der Graue Kranich. Die Neue Brehm-Büherei, Bd. 229. A. Ziemsen, Wittenberg LutherstadtGoogle Scholar
  59. Prange H (2010) Zug und Rast des Kranichs Grus grus und die Veränderung in vier Jahrzehnten. Die Vogelwelt 131:155–167Google Scholar
  60. Prange H (2012) Reasons for changes in crane migration patterns along the West-European flyway. In: Harris J (ed) Cranes, agriculture and climate change. In: Proceedings of a workshop organized by the International Crane Foundation and Muraviovka Park for sustainable land use, May 28–June 3, 2010. International Crane Foundation, Baraboo, WisconsinGoogle Scholar
  61. Prange H (2014) Changes of crane migration on the West European route and their reasons. In: Scientific abstracts of oral and poster contributions of the VIIIth European Crane Conference 2014. Gallocanta, 10 to 14 November 2014, Friends of Gallocanta Association, Gallocanta, SpainGoogle Scholar
  62. Prowse SR (2013) Cranes in the UK: past, present and future. In: Nowald G, Weber A, Fanke J et al (eds) Proceedings of the VIIth European Crane Conference: Breeding, Resting, Migration and Biology. Crane Conservation Germany, Gross MohrdorfGoogle Scholar
  63. Raet J, Sepp K, Kaasik A (2008) Assessment of changes in forest coverage based on historical maps. Forestry Studies 48:69–80CrossRefGoogle Scholar
  64. Raet J, Sepp K, Kaasik A, Kuusemets V, Külvik M (2010) Distribution of the Green Network of Estonia. Forestry Studies 53:66–74Google Scholar
  65. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed March 2014
  66. Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modelling in ecology. Biometrics 69(1):274–281CrossRefPubMedGoogle Scholar
  67. Salvi A (2013) Eurasian crane (Grus grus) and agriculture in France. In: Nowald G, Weber A, Fanke J et al (eds) Proceedings of the VIIth European crane conference: breeding, resting, migration and biology. Crane Conservation Germany, Gross MohrdorfGoogle Scholar
  68. Satelliittikurjet (2014) Migration routes and most important stopover sites and over-wintering grounds of the Finnish population of the Eurasian crane (Grus grus). http://www.satelliittikurjet.fi/index.html. Accessed March 2014
  69. Saurola P, Valkama J, Velmala W (eds) (2013) The Finnish bird ringing atlas, vol I. Finnish Museum of Natural History and Ministry of Environment, HelsinkiGoogle Scholar
  70. Species Assessments: Eurasian Crane (Grus grus) Least Concern. WI/IUCN SSC Crane Specialist Group—Crane Conservation Plan 2014. International Crane Foundation, Baraboo, Wisconsin (in press)Google Scholar
  71. Suorsa P, Hakkarainen H (2013) Migration of the common crane (Grus grus) in the light of the Finnish satellite telemetry study. In: Saurola P, Valkama J, Velmala W (eds) The Finnish bird ringing atlas, vol I. Finnish Museum of Natural History and Ministry of Environment, HelsinkiGoogle Scholar
  72. The Great Crane Project (2014) http://www.thegreatcraneproject.org.uk. Accessed March 2014
  73. The Norfolk crane story (2014) http://www.norfolkcranes.co.uk/news.html. Accessed December 2014
  74. Tortosa FS, Caballero JM, Reyes-López J (2002) Effect of rubbish dumps on breeding success in the white stork in southern Spain. Waterbirds 25:39–43CrossRefGoogle Scholar
  75. University of East Anglia (2013) Why white storks have stopped migrating? Science Daily. http://www.sciencedaily.com/releases/2013/02/130227085845.htm. Accessed March 2014
  76. Vasiliev N, Astover A, Mõtte M, Noormets M, Reintam E, Roostalu H, Matveev E (2008) Efficiency of Estonian grain farms in 2000–2004. Agr Food Sci 17:31–40Google Scholar
  77. Végvári Z, Hansbauer M, Schulte B (2012) The Hortobagy National Park—one of the most important stop-over sites for the Eurasian Cranes in Europe: Changes and threats. In: Harris J (ed) Cranes, agriculture and climate change. Proceedings of a workshop organized by the International Crane Foundation and Muraviovka Park for sustainable land use, May 28–June 3, 2010. International Crane Foundation, Baraboo, WisconsinGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Aivar Leito
    • 1
  • Robert Gerald Henry Bunce
    • 1
  • Mart Külvik
    • 1
  • Ivar Ojaste
    • 1
  • Janar Raet
    • 1
  • Miguel Villoslada
    • 1
  • Meelis Leivits
    • 2
  • Anne Kull
    • 1
  • Valdo Kuusemets
    • 1
  • Tiiu Kull
    • 1
  • Marc Joris Metzger
    • 3
  • Kalev Sepp
    • 1
  1. 1.Estonian University of Life SciencesTartuEstonia
  2. 2.University of TartuTartuEstonia
  3. 3.The University of EdinburghEdinburghUK

Personalised recommendations