Landscape Ecology

, Volume 29, Issue 3, pp 529–540 | Cite as

Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity

  • Yunhui Liu
  • Christoph Rothenwöhrer
  • Christoph Scherber
  • Péter Batáry
  • Zoltán Elek
  • Juliane Steckel
  • Stefan Erasmi
  • Teja Tscharntke
  • Catrin Westphal
Research Article


Current biodiversity conservation policies have so far had limited success because they are mainly targeted to the scale of individual fields with little concern on different responses of organism groups at larger spatial scales. We investigated the relative impacts of multi-scale factors, including local land use intensity, landscape context and region, on functional groups of beetles (Coleoptera). In 2008, beetles were suction-sampled from 95 managed grasslands in three regions, ranging from Southern to Northern Germany. The results showed that region was the most important factor affecting the abundance of herbivores and the abundance and species composition of predators and decomposers. Herbivores were not affected by landscape context and land use intensity. The species composition of the predator communities changed with land use intensity, but only in interaction with landscape context. Interestingly, decomposer abundance was negatively related to land use intensity in low-diversity landscapes, whereas in high-diversity landscapes the relation was positive, possibly due to enhanced spillover effects in complex landscapes. We conclude that (i) management at multiple scales, from local sites to landscapes and regions, is essential for managing biodiversity, (ii) beetle predators and decomposers are more affected than herbivores, supporting the hypothesis that higher trophic levels are more sensitive to environmental change, and (iii) sustaining biological control and decomposition services in managed grassland needs a diverse landscape, while effects of local land use intensity may depend on landscape context.


Coleoptera Functional groups Functional traits Multiple scales Landscape diversity 



We thank the managers of the three exploratories, Swen Renner, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Simone Pfeiffer and Christiane Fischer giving support through the central office, Michael Owonibi for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. We are very grateful to Boris Büche for his great help with the identification of beetles and classification of feeding types. We thank Michaela Bellach for her valuable contribution to the land use data. The work has been partly funded by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (DFG- Ts45/28-1.). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG). Y. L. was supported by China Scholarship Council, P. B. was supported the German Research Foundation (DFG BA 4438/1-1) and C. W. was supported by the German Federal Ministry of Education and Research (DLR 01LL0917D). We also would like to thank two anonymous reviewers for their valuable suggestions and comments, which were of great help in improving the paper.

Supplementary material

10980_2014_9987_MOESM1_ESM.tiff (194 kb)
Appendix 1 Site biplots of partial RDA ordinations for feeding types with region as a constraints variable, and landscape diversity and land use intensity as conditioned variables (TIFF 195 kb)
10980_2014_9987_MOESM2_ESM.doc (268 kb)
Appendix S1 Sampling plots in the study regions reported as a KML (Keyhole Markup Language) file (DOC 269 kb)
10980_2014_9987_MOESM3_ESM.kmz (2 kb)
Supplementary Material 3 (KMZ 3 kb)


  1. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  2. Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108:205–217CrossRefGoogle Scholar
  3. Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on Dung Beetle functional diversity. PLoS One 6:e17976PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bassa M, Boutin C, Chamorro L, Sans FX (2011) Effects of farming management and landscape heterogeneity on plant species composition of Mediterranean field boundaries. Agric Ecosyst Environ 141:455–460CrossRefGoogle Scholar
  5. Batáry P, Báldi A, Szé G, Podlussány A, Rozner I, Erdős S (2007) Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers Distrib 13:196–202CrossRefGoogle Scholar
  6. Batáry P, Báldi A, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B 278:1894–1902PubMedCrossRefGoogle Scholar
  7. Bengtsson J, Ahnström J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269CrossRefGoogle Scholar
  8. Blake S, Foster GN, Eyre MD, Luff ML (1994) Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiologia 38:502–512Google Scholar
  9. Blüthgen N, Dormann CF, Prati D, Klaus VH, Kleinebecker T, Hölzel N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220CrossRefGoogle Scholar
  10. Böhme J (2001) Phytophage Käfer und ihre Wirtspflanzen in Mitteleuropa: ein Kompendium. Bioform, HeroldsbergGoogle Scholar
  11. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238PubMedCrossRefGoogle Scholar
  12. Borges PAV, Brown VK (2003) Estimating species richness of arthropods in Azorean pastures: the adequacy of suction sampling and pitfall trapping. Graellsia 59:7–24CrossRefGoogle Scholar
  13. Brook A, Woodcock B, Sinka M, Vanbergen A (2008) Experimental verification of suction sampler capture efficiency in grasslands of differing vegetation height and structure. J Appl Ecol 45:1357–1363CrossRefGoogle Scholar
  14. Caley MJ, Schluter D (1997) The relationship between local and regional diversity. Ecology 78:70–80CrossRefGoogle Scholar
  15. Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conservation planning for ecosystem services. PLoS Biol 4:e379PubMedCentralPubMedCrossRefGoogle Scholar
  16. Clough Y, Kruess A, Kleijn D, Tscharntke T (2005) Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J Biogeogr 32:2007–2014CrossRefGoogle Scholar
  17. Clough Y, Kruess A, Tscharntke T (2007) Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric Ecosyst Environ 118:285–290CrossRefGoogle Scholar
  18. Cole LJ, McCracken DI, Nennis P, Downie IS, Griffin AL, Foster GN, Murphy KJ, Waterhouse T (2002) Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland. Agric Ecosyst Environ 93:323–336CrossRefGoogle Scholar
  19. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. Accessed 16 Sep 2013
  20. Concepción ED, Díaz M (2011) Field, landscape and regional effects of farmland management on specialist open-land birds: does body size matter? Agric Ecosyst Environ 142:303–310CrossRefGoogle Scholar
  21. Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landscape Ecol 23:135–148CrossRefGoogle Scholar
  22. Concepción ED, Díaz M, Kleijn D, Báldi A, Batáry P, Clough Y, Gabriel D, Herzog F, Holzschuh A, Knop E, Marshall EJP, Tscharntke T, Verhulst J (2012) Interactive effects of landscape context constrain the effectiveness of local agri-environmental management. J Appl Ecol 49:695–705Google Scholar
  23. Dennis P, Young MR, Gordon IJ (1998) Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecol Entomol 23:253–264CrossRefGoogle Scholar
  24. Díaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689PubMedCrossRefGoogle Scholar
  25. Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition and remnant size. Conserv Biol 19:182–194CrossRefGoogle Scholar
  26. Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138CrossRefGoogle Scholar
  27. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485CrossRefGoogle Scholar
  28. Fournier E, Loreau M (2001) Respective roles of recent hedges and forest patch remnants in the maintenance of ground-beetle, Coleoptera: Carabidae. diversity in an agricultural landscape. Landscape Ecol 16:17–32CrossRefGoogle Scholar
  29. Gard TC (1984) Persistence in food webs. In: Levin SA, Hallam TG (eds) Mathematical Ecology. Springer, Berlin, pp 208–219CrossRefGoogle Scholar
  30. Gardiner MM, Landis DA, Gratton C, Schmidt N, O’Neal M, Mueller E, Chacon J, Heimpel GE, DiFonzo CD (2009) Landscape composition influences patterns of native and exotic lady beetle abundance. Divers Distrib 15:554–564CrossRefGoogle Scholar
  31. Grandchamp AC, Bergamini A, Stofer S, Niemelä J, Duelli P, Scheidegger C (2005) The influence of grassland management on ground beetles, Carabidae, Coleoptera in Swiss montane meadows. Agric Ecosyst Environ 110:307–317CrossRefGoogle Scholar
  32. Greenleaf S, Williams N, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596PubMedCrossRefGoogle Scholar
  33. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  34. Hoebeke ER, Byers RA, Alonso-Zarazaga MA, Stimmel JF (2000) Ischnopterapion (Chlorapion) virens (Herbst) (Coleoptera: Curculionoidea: Brentidae: Apioninae), a Palearctic clover pest new to North America: recognition features, distribution, and bionomics. P Entomol Soc Wash 102:151–161Google Scholar
  35. Holt RD (1996) Food webs in space: an island biogeographic perspective. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman & Hall, New York, pp 313–323CrossRefGoogle Scholar
  36. Hutton SA, Giller PS (2003) The effects of the intensification of agriculture on northern temperate dung beetle communities. J Appl Ecol 40:994–1007CrossRefGoogle Scholar
  37. Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecol 12:85–197CrossRefGoogle Scholar
  38. Kennedy TF (1994) The ecology of Bembidion obtusum (Ser.) (Coleoptera: Carabidae) in winter wheat fields in Ireland. Biol Environ 94B:33–40Google Scholar
  39. Kleijn D, Baquero RA, Clough Y, Diaz M, De Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Johl R, Knop E, Kruess A, Marshall EJ, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Eco Lett 9:243–254CrossRefGoogle Scholar
  40. Koch K (1989a) Die Käfer Mitteleuropas. Ökologie Bds. 1. Goecke & Evers, KrefeldGoogle Scholar
  41. Koch K (1989b) Die Käfer Mitteleuropas. Ökologie Bds. 2. Goecke & Evers, KrefeldGoogle Scholar
  42. Koch K (1992) Die Käfer Mitteleuropas. Ökologie Bds. 3. Goecke & Evers, KrefeldGoogle Scholar
  43. Kruess A, Tscharntke T (2002) Contrasting responses of plant and insect diversity to variation in grazing intensity. Biol Conserv 106:293–302CrossRefGoogle Scholar
  44. Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147CrossRefGoogle Scholar
  45. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  46. Lövei GL, Magura T (2006) Body size changes in ground beetle assemblages-a reanalysis of Braun (2004)’s data. Ecol Entomol 31:411–414CrossRefGoogle Scholar
  47. Matson PA, Parton WJ, Power A, Swift M (1997) Agricultural intensification and ecosystem properties. Science 277:504–509PubMedCrossRefGoogle Scholar
  48. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS v3: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Accessed Jun 2012
  49. MEA (2005) Millenium ecosystem assessment. Island Press, WashingtonGoogle Scholar
  50. Millán de la Peña N, Butet A, Delettre Y, Morant P, Burel F (2003) Landscape context and carabid beetles, Coleoptera: Carabidae. communities of hedgerows in western France. Agric Ecosyst Environ 94:59–72CrossRefGoogle Scholar
  51. Mommertz S, Schauer C, Köster N, Lang A, Filser J (1996) A comparison of D-Vac suction, fenced and unfenced pitfall trap sampling of epigeal arthropods in agro-ecosystems. Ann Zool Fennici 33:117–124Google Scholar
  52. Morris MG, Rispin WE (1988) A beetle fauna of oolitic limestone grassland, and the responses of species to conservation management by different cutting régimes. Biol Conserv 43:87–105CrossRefGoogle Scholar
  53. Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Eco Lett 6:567–579CrossRefGoogle Scholar
  54. Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae Dung Beetles. Biol Conserv 141:1461–1474CrossRefGoogle Scholar
  55. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2.0–5. Accessed Sept 2012
  56. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer Verlag, New YorkCrossRefGoogle Scholar
  57. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2013) nlme: Linear and nonlinear mixed effects models. R package version 3.1–108. Accessed Jan 2013
  58. Powell JA (2009) Coleoptera. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, Waltham, p 1132Google Scholar
  59. Purnama Hidayat S, Manuwoto S, Noerdjito WA, Tscharntke T, Schulze CH (2010) Diversity and body size of dung beetles attracted to different dung types along a tropical land use gradient in Sulawesi, Indonesia. J Trop Ecol 26:53–65CrossRefGoogle Scholar
  60. Purtauf T, Dauber J, Wolters V (2005a) The response of carabids to landscape simplification is different for different trophic groups. Oecologia 142:458–464PubMedCrossRefGoogle Scholar
  61. Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005b) Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174CrossRefGoogle Scholar
  62. R Core Team (2012) R: a language and environment for statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Eco Lett 9:603–614CrossRefGoogle Scholar
  64. Ricci C (1986) Food strategy of Tytthaspis sedecimpunctata in different habitats. In: Hodek I (ed) Ecology of aphidophaga. Academia Press, Prague, pp 119–123Google Scholar
  65. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171PubMedCrossRefGoogle Scholar
  66. Sanders D, Entling MH (2011) Large variation of suction sampling efficiency depending on arthropod groups, species traits, and habitat properties. Entomol Exp Appl 138:234–243CrossRefGoogle Scholar
  67. Sanderson M, Byers R, Skinner R, Elwinger G (2003) Growth and complexity of white clover stolons in response to biotic and abiotic stress. Crop Sci 43:2197–2205CrossRefGoogle Scholar
  68. Shapiro JT, Báldi A (2012) Lost locations and the (ir)repeatability of ecological studies. Front Ecol Environ 10:235–236CrossRefGoogle Scholar
  69. Slade EM, Mann DJ, Villanueva JF, Lewis OT (2007) Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J Anim Ecol 76:1094–1104PubMedCrossRefGoogle Scholar
  70. Sutherland AM, Parrella MP (2009) Mycophagy in Coccinellidae: review and synthesis. Biol Control 51:284–293CrossRefGoogle Scholar
  71. Symondson W, Sunderland K, Greenstone M (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594PubMedCrossRefGoogle Scholar
  72. Theiling KM, Croft B (1988) Pesticide side-effects on arthropod natural enemies: a database summary. Agric Ecosyst Environ 21:191–218CrossRefGoogle Scholar
  73. Tscharntke T, Kruess A (1999) Habitat fragmentation and biological control. In: Hawkins B, Cornell H (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 190–205CrossRefGoogle Scholar
  74. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Eco Lett 8:857–874CrossRefGoogle Scholar
  75. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012a) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59CrossRefGoogle Scholar
  76. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012b) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685PubMedCrossRefGoogle Scholar
  77. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  78. Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164CrossRefGoogle Scholar
  79. Werling BP, Gratton C (2008) Influence of field margins and landscape context on ground beetle diversity in Wisconsin, USA. Potato fields. Agric Ecosyst Environ 128:104–108CrossRefGoogle Scholar
  80. Wilson JD, Morris AJ, Arroyo BE, Clark SC, Bradbury RB (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric Ecosyst Environ 75:13–30CrossRefGoogle Scholar
  81. Woltz MJ, Isaacs R, Landis DA (2012) Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric Ecosyst Environ 152:40–49CrossRefGoogle Scholar
  82. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, pp 386–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yunhui Liu
    • 1
    • 2
  • Christoph Rothenwöhrer
    • 1
  • Christoph Scherber
    • 1
  • Péter Batáry
    • 1
  • Zoltán Elek
    • 3
  • Juliane Steckel
    • 4
  • Stefan Erasmi
    • 5
  • Teja Tscharntke
    • 1
  • Catrin Westphal
    • 1
  1. 1.Agroecology, Department of Crop SciencesGeorg-August-UniversityGöttingenGermany
  2. 2.College of Agricultural Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
  3. 3.MTA-ELTE-MTMEcology Research GroupBudapestHungary
  4. 4.Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WuerzburgWuerzburgGermany
  5. 5.Institute of GeographyGeorg-August-UniversityGöttingenGermany

Personalised recommendations